메뉴 건너뛰기




Volumn 87, Issue 2, 2003, Pages 348-365

Bounds for mean colour numbers of graphs

Author keywords

Chromatic polynomial; Graph; Mean colour number

Indexed keywords


EID: 0037374034     PISSN: 00958956     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0095-8956(02)00023-0     Document Type: Article
Times cited : (4)

References (8)
  • 3
    • 0013536036 scopus 로고    scopus 로고
    • Proof of a chromatic polynomial conjecture
    • F.M. Dong, Proof of a chromatic polynomial conjecture, J. Combin. Theory Ser. B 78 (2000) 35-44.
    • (2000) J. Combin. Theory Ser. B , vol.78 , pp. 35-44
    • Dong, F.M.1
  • 4
    • 0013499318 scopus 로고    scopus 로고
    • Further results on mean colour numbers
    • submitted for publication
    • F.M. Dong, Further results on mean colour numbers, J. Graph Theory, submitted for publication.
    • J. Graph Theory
    • Dong, F.M.1
  • 6
    • 0032371804 scopus 로고    scopus 로고
    • Removing edges can increase the average number of colours in the colourings of a graph
    • Michele Mosca, Removing edges can increase the average number of colours in the colourings of a graph, Combin. Probab. Comput. 7 (1998) 211-216.
    • (1998) Combin. Probab. Comput. , vol.7 , pp. 211-216
    • Mosca, M.1
  • 7
    • 0002461816 scopus 로고
    • Chromatic polynomials
    • L.W. Beineke, R.J. Wilson (Eds.), Academic Press, New York
    • R.C. Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory III, Academic Press, New York, 1988, pp. 15-42.
    • (1988) Selected Topics in Graph Theory III , pp. 15-42
    • Read, R.C.1    Tutte, W.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.