메뉴 건너뛰기




Volumn 37, Issue 3-4, 2003, Pages 183-194

Improved neural-network model predicts dewpoint pressure fo retrograde gases

Author keywords

Correlations; Dewpoint pressure; Neural networks

Indexed keywords

CORRELATION METHODS; NEURAL NETWORKS; PETROLEUM REFINING; PETROLEUM RESERVOIRS;

EID: 0037370803     PISSN: 09204105     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0920-4105(02)00352-2     Document Type: Article
Times cited : (29)

References (17)
  • 2
    • 0000334686 scopus 로고
    • June. How to develop neural-network application
    • Bailey, D., Thomsom, D., 1990, June. How to develop neural-network application. AI Expert, 38-47.
    • (1990) AI Expert , pp. 38-47
    • Bailey, D.1    Thomsom, D.2
  • 4
    • 0037196264 scopus 로고    scopus 로고
    • Predicting the dewpoint pressure for gas condensate reservoir: Empirical models and equations of state
    • Elsharkawy, A., 2002. Predicting the dewpoint pressure for gas condensate reservoir: empirical models and equations of state. Fluid Phase Equilib. 193, 147-165.
    • (2002) Fluid Phase Equilib. , vol.193 , pp. 147-165
    • Elsharkawy, A.1
  • 5
    • 0032014465 scopus 로고    scopus 로고
    • EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs
    • Elsharkawy, A., Foda, S.G., 1998. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs. Energy Fuels 12, 353-364.
    • (1998) Energy Fuels , vol.12 , pp. 353-364
    • Elsharkawy, A.1    Foda, S.G.2
  • 7
    • 85031212312 scopus 로고    scopus 로고
    • Geoquest, Schlumberger, Houston, TX
    • Geoquest, 1999. PVTi Software. Schlumberger, Houston, TX.
    • (1999) PVTi Software
  • 12
    • 0029219616 scopus 로고
    • January. Neural network: What it can do for petroleum engineers
    • Mohaghegh, S., 1995, January. Neural network: what it can do for petroleum engineers. JPT, J. Pet. Technol., 42.
    • (1995) JPT, J. Pet. Technol. , vol.42
    • Mohaghegh, S.1
  • 13
    • 0342520629 scopus 로고    scopus 로고
    • September. Virtual intelligence applications in petroleum engineering: Part I. Artificial neural networks
    • Mohaghegh, S., 2000, September. Virtual intelligence applications in petroleum engineering: Part I. Artificial neural networks. JPT, J. Pet. Technol., 64.
    • (2000) JPT, J. Pet. Technol. , vol.64
    • Mohaghegh, S.1
  • 14
    • 0242496849 scopus 로고
    • June. A correlation of Dewpoint pressure with fluid composition and temperature
    • Trans. AIME 240
    • Nementh, L.K., Kennedy, H.T., 1967, June. A correlation of Dewpoint pressure with fluid composition and temperature. SPE J., 99; Trans. AIME 240, 99-104.
    • (1967) SPE J. , vol.99 , pp. 99-104
    • Nementh, L.K.1    Kennedy, H.T.2
  • 15
    • 0000543648 scopus 로고
    • Prediction of saturation pressures for condensate-gas and volatile-oil mixtures
    • Organick, E.I., Golding, B.H., 1952. Prediction of saturation pressures for condensate-gas and volatile-oil mixtures. Trans. AIME 195, 135.
    • (1952) Trans. AIME , vol.195 , pp. 135
    • Organick, E.I.1    Golding, B.H.2
  • 16
    • 0004123519 scopus 로고    scopus 로고
    • Statistica Neural Networks, Release 4.0 F. Statsoft, Tulsa, OK
    • Statistica Neural Networks, 2000a. User's Manual, Release 4.0 F. Statsoft, Tulsa, OK.
    • (2000) User's Manual
  • 17
    • 85031228475 scopus 로고    scopus 로고
    • Statistica Neural Networks, Release 4.0 F. Statsoft, Tulsa, OK
    • Statistica Neural Networks, 2000b. Release 4.0 F. Statsoft, Tulsa, OK.
    • (2000)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.