-
5
-
-
0242515014
-
-
J H. Page, W J L. Buyers, G. Dolling, P. Gerlach, and J P. Harrison, Phys. Rev. B39, 6180 (1989).
-
(1989)
Phys. Rev. B
, vol.39
, pp. 6180
-
-
Page, J.H.1
Buyers, W.J.L.2
Dolling, G.3
Gerlach, P.4
Harrison, J.P.5
-
6
-
-
0033171252
-
-
V M. Gun’ko, V I. Zarko, V V. Turov, R. Leboda, and E. Chibowski, Langmuir15, 5694 (1999).
-
(1999)
Langmuir
, vol.15
, pp. 5694
-
-
Gun’ko, V.M.1
Zarko, V.I.2
Turov, V.V.3
Leboda, R.4
Chibowski, E.5
-
8
-
-
0037096561
-
-
I V. Schweigert, K E. Lehtinen, M J. Carrier, and M R. Zachariah, Phys. Rev. B65, 235410 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 235410
-
-
Schweigert, I.V.1
Lehtinen, K.E.2
Carrier, M.J.3
Zachariah, M.R.4
-
9
-
-
0032596043
-
-
H. Barthel, M. Heinenmann, M. Stintz, and B. Wessely, Part. Part. Syst. Charact.16, 169 (1999).
-
(1999)
Part. Part. Syst. Charact.
, vol.16
, pp. 169
-
-
Barthel, H.1
Heinenmann, M.2
Stintz, M.3
Wessely, B.4
-
10
-
-
0034888646
-
-
R)
-
I S. Altman, D. Lee, J D. Chung, J. Song, and M. Choi, Phys. Rev. B63, 161402(R) (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 161402
-
-
Altman, I.S.1
Lee, D.2
Chung, J.D.3
Song, J.4
Choi, M.5
-
11
-
-
45249128489
-
-
and references therein
-
B C. Bunker, D M. Haaland, T A. Michalske, and W L. Smit, Surf. Sci.222, 95 (1989), and references therein.
-
(1989)
Surf. Sci.
, vol.222
, pp. 95
-
-
Bunker, B.C.1
Haaland, D.M.2
Michalske, T.A.3
Smit, W.L.4
-
13
-
-
85038319720
-
-
L. Stixrude, in, edited by R. A. B. Devine, J.-P. Duraud, and E. Dooryhée, (Wiley, Chichester, 2000) 69–103
-
L. Stixrude, in Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide, edited by R. A. B. Devine, J.-P. Duraud, and E. Dooryhée, (Wiley, Chichester, 2000) pp. 69–103.
-
-
-
-
15
-
-
0000737061
-
-
R J. Hemley, H K. Mao, P M. Bell, and B O. Mysen, Phys. Rev. Lett.57, 747 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 747
-
-
Hemley, R.J.1
Mao, H.K.2
Bell, P.M.3
Mysen, B.O.4
-
20
-
-
0025467306
-
-
S. Susman, K J. Volin, R C. Liebermann, G D. Gwanmesia, and Y. Wang, Phys. Chem. Glasses31, 144 (1990);
-
(1990)
Phys. Chem. Glasses
, vol.31
, pp. 144
-
-
Susman, S.1
Volin, K.J.2
Liebermann, R.C.3
Gwanmesia, G.D.4
Wang, Y.5
-
21
-
-
4243670180
-
-
S. Susman, K J. Volin, D L. Price, M. Grimsditch, J P. Rino, R K. Kalia, P. Vashishta, G. Gwanmesia, Y. Wang, and R C. Liebermann, Phys. Rev. B43, 1194 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 1194
-
-
Susman, S.1
Volin, K.J.2
Price, D.L.3
Grimsditch, M.4
Rino, J.P.5
Kalia, R.K.6
Vashishta, P.7
Gwanmesia, G.8
Wang, Y.9
Liebermann, R.C.10
-
22
-
-
0001473331
-
-
W. Jin, R K. Kalia, P. Vashishta, and J P. Rino, Phys. Rev. Lett.71, 3146 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3146
-
-
Jin, W.1
Kalia, R.K.2
Vashishta, P.3
Rino, J.P.4
-
26
-
-
0002161751
-
-
H F. Poulsen, J. Neuefeind, H.-B. Neumann, J R. Schneider, and M D. Zeidler, J. Non-Cryst. Solids188, 63 (1995);
-
(1995)
J. Non-Cryst. Solids
, vol.188
, pp. 63
-
-
Poulsen, H.F.1
Neuefeind, J.2
B, H.3
Schneider, J.R.4
Zeidler, M.D.5
-
28
-
-
0035928219
-
-
M. Isshiki, Y. Ohishi, S. Goto, K. Takeshita, and I. Ishikawa, Nucl. Instrum. Methods Phys. Res. A467–468, 663 (2001).
-
(2001)
Nucl. Instrum. Methods Phys. Res. A
, vol.467-468
, pp. 663
-
-
Isshiki, M.1
Ohishi, Y.2
Goto, S.3
Takeshita, K.4
Ishikawa, I.5
-
29
-
-
21844465445
-
-
S. Kohara, K. Suzuya, Y. Kashihara, N. Matsumoto, N. Umesaki, and I. Sakai, Nucl. Instrum. Methods Phys. Res. A467–468, 1030 (2001).
-
(2001)
Nucl. Instrum. Methods Phys. Res. A
, vol.467-468
, pp. 1030
-
-
Kohara, S.1
Suzuya, K.2
Kashihara, Y.3
Matsumoto, N.4
Umesaki, N.5
Sakai, I.6
-
31
-
-
85038348231
-
-
The total correlation function (formula presented) is often used in obtaining interatomic correlations by peak fitting procedures, where (formula presented) and (formula presented) is the mean number density derived from the density of the material. Since the present samples, compressed especially at 4 GPa, are still rather porous, we cannot obtain the true density of these samples and hence cannot derive (formula presented) as well. However, we can still use (formula presented) to obtain near-neighbor bond distances
-
The total correlation function (formula presented) is often used in obtaining interatomic correlations by peak fitting procedures, where (formula presented) and (formula presented) is the mean number density derived from the density of the material. Since the present samples, compressed especially at 4 GPa, are still rather porous, we cannot obtain the true density of these samples and hence cannot derive (formula presented) as well. However, we can still use (formula presented) to obtain near-neighbor bond distances.
-
-
-
-
33
-
-
85038280064
-
-
However, we see a slight difference in Si-Si nearest neighbor correlations in (formula presented) between bulk (formula presented) and fumed silica. The Si-Si correlation in fumed silica appears to have an additional distribution on the longer distance side as compared with that in bulk (formula presented) suggesting a subtle structural difference between bulk (formula presented) and fumed silica
-
However, we see a slight difference in Si-Si nearest neighbor correlations in (formula presented) between bulk (formula presented) and fumed silica. The Si-Si correlation in fumed silica appears to have an additional distribution on the longer distance side as compared with that in bulk (formula presented) suggesting a subtle structural difference between bulk (formula presented) and fumed silica.
-
-
-
-
35
-
-
85038332175
-
-
We also compressed the silica powders whose grain size is 10–100 μm. However, anelastic compression has not been observed for these silica powders even after compression at 8 GPa. This indicates that the irreversible compaction is peculiar only to nanometer-sized silica particles, and the present phenomena cannot simply be explained in terms of the inhomogeneous pressure distribution among the fine particles under compression
-
We also compressed the silica powders whose grain size is 10–100 μm. However, anelastic compression has not been observed for these silica powders even after compression at 8 GPa. This indicates that the irreversible compaction is peculiar only to nanometer-sized silica particles, and the present phenomena cannot simply be explained in terms of the inhomogeneous pressure distribution among the fine particles under compression.
-
-
-
-
36
-
-
0001087593
-
-
S B. Qadri, J. Yang, B R. Ratna, E F. Skelton, and J Z. Hu, Appl. Phys. Lett.69, 2205 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 2205
-
-
Qadri, S.B.1
Yang, J.2
Ratna, B.R.3
Skelton, E.F.4
Hu, J.Z.5
-
37
-
-
0034896677
-
-
Z. Wang, S K. Saxena, V. Pischedda, H P. Liermann, and C S. Zha, Phys. Rev. B64, 012102 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 12102
-
-
Wang, Z.1
Saxena, S.K.2
Pischedda, V.3
Liermann, H.P.4
Zha, C.S.5
-
39
-
-
0032343561
-
-
J Z. Jiang, J S. Olsen, L. Gerward, and S. Morup, Europhys. Lett.44, 620 (1998).
-
(1998)
Europhys. Lett.
, vol.44
, pp. 620
-
-
Jiang, J.Z.1
Olsen, J.S.2
Gerward, L.3
Morup, S.4
|