-
1
-
-
0040120482
-
Moments, continuité et analyse multifractals des martingales de Mandelbrot
-
Barral, J. (1999). Moments, continuité et analyse multifractals des martingales de Mandelbrot. Prob. Theory Relat. Fields 113, 535-569.
-
(1999)
Prob. Theory Relat. Fields
, vol.113
, pp. 535-569
-
-
Barral, J.1
-
2
-
-
0001483086
-
Large deviations in the supercritical branching process
-
Biggins, J. D. and Bingham, N. H. (1993). Large deviations in the supercritical branching process. Adv. Appl. Prob. 25, 757-772.
-
(1993)
Adv. Appl. Prob.
, vol.25
, pp. 757-772
-
-
Biggins, J.D.1
Bingham, N.H.2
-
4
-
-
0034336959
-
Thick points for spatial Brownian motion: Multifractal analysis of occupation measure
-
Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2000). Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. Prob. 28, 1-35.
-
(2000)
Ann. Prob.
, vol.28
, pp. 1-35
-
-
Dembo, A.1
Peres, Y.2
Rosen, J.3
Zeitouni, O.4
-
5
-
-
0042223738
-
Thin points for Brownian motion
-
Dembo, A., Peres, Y. Rosen, J. and Zeitouni, O. (2000). Thin points for Brownian motion. Ann. Inst. H. Poincaré Prob. Statist. 36, 749-774.
-
(2000)
Ann. Inst. H. Poincaré Prob. Statist.
, vol.36
, pp. 749-774
-
-
Dembo, A.1
Peres, Y.2
Rosen, J.3
Zeitouni, O.4
-
6
-
-
0001463721
-
A limit theorem for a class of supercritical branching processes
-
Doney, R. A. (1972). A limit theorem for a class of supercritical branching processes. J. Appl. Prob. 9, 707-724.
-
(1972)
J. Appl. Prob.
, vol.9
, pp. 707-724
-
-
Doney, R.A.1
-
7
-
-
0012959605
-
On single- and multi-type general age-dependent branching processes
-
Doney, R. A. (1976). On single- and multi-type general age-dependent branching processes. J. Appl. Prob. 13, 239-246.
-
(1976)
J. Appl. Prob.
, vol.13
, pp. 239-246
-
-
Doney, R.A.1
-
10
-
-
34250101043
-
Statistically self-similar fractals
-
Graf, S. (1987). Statistically self-similar fractals. Prob. Theory Relat. Fields 74, 357-392.
-
(1987)
Prob. Theory Relat. Fields
, vol.74
, pp. 357-392
-
-
Graf, S.1
-
11
-
-
0003322695
-
The exact Hausdorff dimension in random recursive constructions
-
Graf, S., Mauldin, R. D. and Williams, S. C. (1988). The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 71, No. 381.
-
(1988)
Mem. Amer. Math. Soc.
, vol.71
, Issue.381
-
-
Graf, S.1
Mauldin, R.D.2
Williams, S.C.3
-
12
-
-
0002604957
-
Fluctuation of the transition density for Brownian motion on random recursive Sierpiński gaskets
-
Hambly, B. M. and Kumagai, T. (2001). Fluctuation of the transition density for Brownian motion on random recursive Sierpiński gaskets. Stoch. Process. Appl. 92, 61-85.
-
(2001)
Stoch. Process. Appl.
, vol.92
, pp. 61-85
-
-
Hambly, B.M.1
Kumagai, T.2
-
13
-
-
0343772976
-
Random fractals and probability metrics
-
Hutchinson, J. E. and Rüschendorff, L. (2000). Random fractals and probability metrics Adv. Appl. Prob. 32, 925-947.
-
(2000)
Adv. Appl. Prob.
, vol.32
, pp. 925-947
-
-
Hutchinson, J.E.1
Rüschendorff, L.2
-
14
-
-
24544450989
-
Self-similar random fractal measure using contraction method in probabilistic metric spaces
-
Preprint
-
Kolumbán, J. and Soós, A. (2001). Self-similar random fractal measure using contraction method in probabilistic metric spaces. Preprint.
-
(2001)
-
-
Kolumbán, J.1
Soós, A.2
-
15
-
-
0036162005
-
Random Markov-self-similar measures
-
Liang, J. R. (2002). Random Markov-self-similar measures. Stoch. Process. Appl. 98, 113-130.
-
(2002)
Stoch. Process. Appl.
, vol.98
, pp. 113-130
-
-
Liang, J.R.1
-
16
-
-
0030544888
-
The exact Hausdorff dimension of a branching set
-
Liu, Q. (1996). The exact Hausdorff dimension of a branching set. Prob. Theory Relat. Fields 104, 515-538.
-
(1996)
Prob. Theory Relat. Fields
, vol.104
, pp. 515-538
-
-
Liu, Q.1
-
17
-
-
0012911035
-
The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale
-
In Trees; eds B. Chauvin, S. Cohen and A. Rouault. Birkhäuser, Basel
-
Liu, Q. (1996). The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale. In Trees (Progress Prob. 40), eds B. Chauvin, S. Cohen and A. Rouault. Birkhäuser, Basel, pp. 51-80.
-
(1996)
Progress Prob.
, vol.40
, pp. 51-80
-
-
Liu, Q.1
-
18
-
-
0042334601
-
Local dimensions of the branching measure on a Galton-Watson tree
-
Liu, Q. (2001). Local dimensions of the branching measure on a Galton-Watson tree. Ann. Inst. H. Poincaré Prob. Statist. 37, 195-222.
-
(2001)
Ann. Inst. H. Poincaré Prob. Statist.
, vol.37
, pp. 195-222
-
-
Liu, Q.1
-
19
-
-
0006799223
-
Random recursive constructions: Asymptotic geometric and topological properties
-
Mauldin, R. D. and Williams, S. C. (1986). Random recursive constructions: asymptotic geometric and topological properties. Trans. Amer. Math. Soc. 295, 325-346.
-
(1986)
Trans. Amer. Math. Soc.
, vol.295
, pp. 325-346
-
-
Mauldin, R.D.1
Williams, S.C.2
-
20
-
-
0037092778
-
Thick and thin points for branching measure on a Galton-Watson tree
-
Mörters, P. and Shieh, N. R. (2002). Thick and thin points for branching measure on a Galton-Watson tree. Statist. Prob. Lett. 58, 13-22.
-
(2002)
Statist. Prob. Lett.
, vol.58
, pp. 13-22
-
-
Mörters, P.1
Shieh, N.R.2
-
21
-
-
0001491884
-
On the convergence of supercritical general (C-M-J) branching processes
-
Nerman, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrscheinlichkeitsth. 57, 365-395.
-
(1981)
Z. Wahrscheinlichkeitsth.
, vol.57
, pp. 365-395
-
-
Nerman, O.1
-
22
-
-
0000537807
-
Self-similar random measures. IV. The recursive construction model of Falconer, Graf and Mauldin and Williams
-
Patzchke, N. and Zähle, U. (1990). Self-similar random measures. IV. The recursive construction model of Falconer, Graf and Mauldin and Williams. Math. Nachr. 149, 285-302.
-
(1990)
Math. Nachr.
, vol.149
, pp. 285-302
-
-
Patzchke, N.1
Zähle, U.2
-
23
-
-
0035998656
-
Multifractal spectra of branching measure on a Galton-Watson tree
-
Shieh, N. R. and Taylor, S. J. (2002). Multifractal spectra of branching measure on a Galton-Watson tree. J. Appl. Prob. 39, 100-111.
-
(2002)
J. Appl. Prob.
, vol.39
, pp. 100-111
-
-
Shieh, N.R.1
Taylor, S.J.2
-
24
-
-
0002031342
-
Self-similar random measures. I. Notion, carrying Hausdorff dimension and hyperbolic distribution
-
Zähle, U. (1988). Self-similar random measures. I. Notion, carrying Hausdorff dimension and hyperbolic distribution. Prob. Theory Relat. Fields 80, 79-100.
-
(1988)
Prob. Theory Relat. Fields
, vol.80
, pp. 79-100
-
-
Zähle, U.1
|