메뉴 건너뛰기




Volumn 104, Issue 1, 2003, Pages 131-154

On swapping and simulated tempering algorithms

Author keywords

Dirichlet forms; Eigenvalues; Markov chains; Monte Carlo algorithms; Multimodal distributions; Simulated tempering; Spectral gap; Swapping

Indexed keywords


EID: 0037358242     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-4149(02)00232-6     Document Type: Article
Times cited : (18)

References (23)
  • 1
    • 0000699604 scopus 로고    scopus 로고
    • Estimation of spectral gap for Markov chains
    • Chen, M.F., 1996. Estimation of spectral gap for Markov chains. Acta Math. Sin. New Ser. 12 (4), 337-360.
    • (1996) Acta Math. Sin. New Ser. , vol.12 , Issue.4 , pp. 337-360
    • Chen, M.F.1
  • 2
    • 21744453864 scopus 로고    scopus 로고
    • Estimation of spectral gap for elliptic operators
    • Chen, M.F., Wang, F.Y., 1997. Estimation of spectral gap for elliptic operators. Trans. AMS 349, 1239-1267.
    • (1997) Trans. AMS , vol.349 , pp. 1239-1267
    • Chen, M.F.1    Wang, F.Y.2
  • 3
    • 21844525463 scopus 로고
    • Numerical simulations on the 4D Heisenberg spinglass
    • Coluzzi, B., 1995. Numerical simulations on the 4D Heisenberg spinglass. J. Phys. A: Math. Gen. 28, 747-754.
    • (1995) J. Phys. A: Math. Gen. , vol.28 , pp. 747-754
    • Coluzzi, B.1
  • 4
    • 0030487036 scopus 로고    scopus 로고
    • Logarithmic Sobolev inequalities for finite Markov chains
    • Diaconis, P., Saloff-Coste, L., 1996. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6, 695-750.
    • (1996) Ann. Appl. Probab. , vol.6 , pp. 695-750
    • Diaconis, P.1    Saloff-Coste, L.2
  • 5
    • 0032136909 scopus 로고    scopus 로고
    • What do we know about the metropolis algorithm?
    • Diaconis, P., Saloff-Coste, L., 1998. What do we know about the metropolis algorithm? J. Comput. System Sci. 57, 20-36.
    • (1998) J. Comput. System Sci. , vol.57 , pp. 20-36
    • Diaconis, P.1    Saloff-Coste, L.2
  • 6
    • 0002740591 scopus 로고
    • Geometric bounds for eigenvalues of Markov chains
    • Diaconis, P., Stroock, D., 1991. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1, 36-61.
    • (1991) Ann. Appl. Probab. , vol.1 , pp. 36-61
    • Diaconis, P.1    Stroock, D.2
  • 7
    • 0001288005 scopus 로고
    • Tempering dynamics and relaxation times in the 3D ising model
    • Fernández, L.A., Marinari, E., Ruiz-Lorenzo, J.J., 1995. Tempering dynamics and relaxation times in the 3D ising model. J. Phys. I France 5, 1247-1254.
    • (1995) J. Phys. I France , vol.5 , pp. 1247-1254
    • Fernández, L.A.1    Marinari, E.2    Ruiz-Lorenzo, J.J.3
  • 9
    • 0000247137 scopus 로고    scopus 로고
    • Estimation and optimization of functions
    • Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Chapman & Hall, London
    • Geyer, C.J., 1996. Estimation and optimization of functions. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in Practice. Chapman & Hall, London, pp. 241-258.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 241-258
    • Geyer, C.J.1
  • 10
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • Geyer, C.J., Thompson, E.A., 1995. Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90, 909-920.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 11
    • 0012989111 scopus 로고
    • Simulated-tempering approach to Spin-glass Simulations
    • cond-mat/9402049
    • Kerler, W., Rehberg, P., 1994. Simulated-tempering approach to Spin-glass Simulations. cond-mat/9402049.
    • (1994)
    • Kerler, W.1    Rehberg, P.2
  • 12
    • 0013020920 scopus 로고    scopus 로고
    • Umbrella sampling and simulated tempering
    • Whittington, S.G. (Ed.), IMA Vol. Mathematical Applications, 102, Springer, New York
    • Madras, N., 1998. Umbrella sampling and simulated tempering. In: Whittington, S.G. (Ed.), Numerical Methods for Polymeric Systems, IMA Vol. Mathematical Applications, 102, Springer, New York, pp. 19-32.
    • (1998) Numerical Methods for Polymeric Systems , pp. 19-32
    • Madras, N.1
  • 13
    • 0036338627 scopus 로고    scopus 로고
    • Markov chain decomposition for convergence rate analysis
    • Madras, N., Randall, D., 2002. Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab. 12, 581-606.
    • (2002) Ann. Appl. Probab. , vol.12 , pp. 581-606
    • Madras, N.1    Randall, D.2
  • 14
    • 0033269352 scopus 로고    scopus 로고
    • Importance samplingfor families of distributions
    • Madras, N., Piccioni, M., 1999. Importance samplingfor families of distributions. Ann. Appl. Probab. 9, 1202-1225.
    • (1999) Ann. Appl. Probab. , vol.9 , pp. 1202-1225
    • Madras, N.1    Piccioni, M.2
  • 16
    • 0002654663 scopus 로고    scopus 로고
    • Optimized Monte Carlo methods
    • Kertész, J., Kondor, I. (Eds.), Springer, New York
    • Marinari, E., 1998. Optimized Monte Carlo methods. In: Kertész, J., Kondor, I. (Eds.), Advances in Computer Simulation. Springer, New York, pp. 50-81.
    • (1998) Advances in Computer Simulation , pp. 50-81
    • Marinari, E.1
  • 17
    • 33644899039 scopus 로고
    • Simulated tempering: A new Monte Carlo scheme
    • Marinari, E., Parisi, G., 1992. Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451-458.
    • (1992) Europhys. Lett. , vol.19 , pp. 451-458
    • Marinari, E.1    Parisi, G.2
  • 18
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • Neal, R., 1996. Sampling from multimodal distributions using tempered transitions. Statist. Comput. 6, 353-366.
    • (1996) Statist. Comput. , vol.6 , pp. 353-366
    • Neal, R.1
  • 19
    • 0012936574 scopus 로고    scopus 로고
    • Monte Carlo study of polymer systems by multiple Markov Chain method
    • Whittington, S.G. (Ed.), IMA Vol. Mathematical Applications, 102, Springer, New York
    • Orlandini, E., 1998. Monte Carlo study of polymer systems by multiple Markov Chain method. In Whittington, S.G. (Ed.), Numerical Methods for Polymeric Systems. IMA Vol. Mathematical Applications, 102, Springer, New York, pp. 33-57.
    • (1998) Numerical Methods for Polymeric Systems , pp. 33-57
    • Orlandini, E.1
  • 20
    • 0000926886 scopus 로고
    • Convergence rates for Markov Chains
    • Rosenthal, J.S., 1995. Convergence rates for Markov Chains. SIAM Rev. 37, 387-405.
    • (1995) SIAM Rev. , vol.37 , pp. 387-405
    • Rosenthal, J.S.1
  • 22
    • 0003040171 scopus 로고    scopus 로고
    • Gibbs sampling methods in genetics
    • Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Chapman & Hall, London
    • Thomas, D.C., Gauderman, W.J., 1996. Gibbs sampling methods in genetics. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in Practice. Chapman & Hall, London, pp. 419-440.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 419-440
    • Thomas, D.C.1    Gauderman, W.J.2
  • 23
    • 0000438128 scopus 로고
    • N-1 models at large N
    • N-1 models at large N. Phys. Lett. B 309, 139-144.
    • (1993) Phys. Lett. B , vol.309 , pp. 139-144
    • Vicari, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.