-
1
-
-
0003582543
-
-
Cambridge University Press, Cambridge
-
See, e.g., E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
-
(1993)
Chaos in Dynamical Systems
-
-
Ott, E.1
-
3
-
-
84995267789
-
-
See, e.g., papers in Chaos 8(2) (1998).
-
(1998)
Papers in Chaos
, vol.8
, Issue.2
-
-
-
5
-
-
35949013227
-
-
S. Bleher, C. Grebogi, E. Ott, and R. Brown, Phys. Rev. A38, 930 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 930
-
-
Bleher, S.1
Grebogi, C.2
Ott, E.3
Brown, R.4
-
8
-
-
0000528202
-
-
C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys. Lett. A 99, 415 (1983); S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica D 17, 125 (1985).
-
(1983)
Phys. Lett. A
, vol.99
, pp. 415
-
-
Grebogi, C.1
McDonald, S.W.2
Ott, E.3
Yorke, J.A.4
-
9
-
-
24444476675
-
-
C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys. Lett. A 99, 415 (1983); S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica D 17, 125 (1985).
-
(1985)
Physica D
, vol.17
, pp. 125
-
-
McDonald, S.W.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
10
-
-
84958290553
-
-
note
-
Due to the existence of homoclinic intersections, the points of the backward images of an open ball across a segment of the unstable manifold, which remain in the interior of the phase space except the exits, might converge to the stable manifold with backward iteration.
-
-
-
-
14
-
-
4243069828
-
-
Nonhyperbolic chaotic scattering is investigated in Y. T. Lau, J. M. Finn, and E. Ott, Phys. Rev. Lett. 66, 978 (1991). They conclude that the time delay function is characterized by the uncertainty dimension d=1 that corresponds to d=2 in our case.
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 978
-
-
Lau, Y.T.1
Finn, J.M.2
Ott, E.3
-
16
-
-
0000264457
-
-
L. Poon, J. Campos, E. Ott, and C. Grebogi, Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 251 (1996).
-
(1996)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.6
, pp. 251
-
-
Poon, L.1
Campos, J.2
Ott, E.3
Grebogi, C.4
-
18
-
-
0000711745
-
-
J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 795 (1992).
-
(1992)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.2
, pp. 795
-
-
Alexander, J.C.1
Yorke, J.A.2
You, Z.3
Kan, I.4
|