메뉴 건너뛰기




Volumn 49, Issue 3, 2003, Pages 692-706

The α-EM algorithm: Surrogate likelihood maximization using α-logarithmic information measures

Author keywords

EM algorithm; logarithm; Convergence speed; Convex divergence; Exponential family; Independent component analysis; Minorization maximization; Supervised and unsupervised learning; Surrogate function; Vector quantization

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; INDEPENDENT COMPONENT ANALYSIS; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; MATRIX ALGEBRA; NONLINEAR PROGRAMMING; PROBABILITY DENSITY FUNCTION; VECTOR QUANTIZATION;

EID: 0037355593     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2002.808105     Document Type: Article
Times cited : (46)

References (41)
  • 1
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussiob)
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm (with discussiob)," J. Roy. Statist. Soc. B, vol. 39, pp. 1-38, 1977.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 2
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Nov.
    • T. K. Moon, "The expectation-maximization algorithm," IEEE Signal Processing Society Mag., pp. 47-60, Nov. 1996.
    • (1996) IEEE Signal Processing Society Mag. , pp. 47-60
    • Moon, T.K.1
  • 5
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-An old folk-song sung to a fast new tune (with discussion)
    • X.-L. Meng and D. van Dyk, "The EM algorithm-An old folk-song sung to a fast new tune (with discussion)," J. Roy. Statist. Soc. B, vol. 59, pp. 511-567, 1997.
    • (1997) J. Roy. Statist. Soc. B , vol.59 , pp. 511-567
    • Meng, X.-L.1    Van Dyk, D.2
  • 7
    • 77950023906 scopus 로고    scopus 로고
    • Optimization transfer using surrogate objective functions (with discussion)
    • K. Lange, D. R. Hunter, and I. Yang, "Optimization transfer using surrogate objective functions (with discussion)," J. Comput. Graph. Statist., vol. 9, pp. 1-59, 2000.
    • (2000) J. Comput. Graph. Statist. , vol.9 , pp. 1-59
    • Lange, K.1    Hunter, D.R.2    Yang, I.3
  • 10
    • 0002453010 scopus 로고
    • Qualification method of classification processes: Concept of structural α-entropy
    • J. Havrda and F. Charvát, "Qualification method of classification processes: Concept of structural α-entropy," Kybernetika, vol. 3, pp. 30-35, 1967.
    • (1967) Kybernetika , vol.3 , pp. 30-35
    • Havrda, J.1    Charvát, F.2
  • 11
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observations
    • I. Csiszár, "Information-type measures of difference of probability distributions and indirect observations," Studia Sci. Math. Hung., vol. 2, pp. 299-318, 1967.
    • (1967) Studia Sci. Math. Hung. , vol.2 , pp. 299-318
    • Csiszár, I.1
  • 12
    • 0012789722 scopus 로고
    • Differential geometry theory of statistics
    • S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Luritzen, and C. R. Rao, Eds. Hayward, CA: Inst. Math. Statist.; Institute of Mathematical Statistics Lecture Notes
    • S. Amari, "Differential geometry theory of statistics," in Differential Geometry in Statistical Inference, S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Luritzen, and C. R. Rao, Eds. Hayward, CA: Inst. Math. Statist., 1985, vol. 10, Institute of Mathematical Statistics Lecture Notes, pp. 21-94.
    • (1985) Differential Geometry in Statistical Inference , vol.10 , pp. 21-94
    • Amari, S.1
  • 15
    • 0000148237 scopus 로고
    • Entropy-like proximal methods in convex programming
    • A. N. Iusem, B. F. Svaiter, and M. Teboulle, "Entropy-like proximal methods in convex programming," Math. Oper. Res., vol. 19, pp. 790-814, 1994.
    • (1994) Math. Oper. Res. , vol.19 , pp. 790-814
    • Iusem, A.N.1    Svaiter, B.F.2    Teboulle, M.3
  • 18
    • 0030677958 scopus 로고    scopus 로고
    • The weighted EM algorithm and block monitoring
    • June
    • ____, "The weighted EM algorithm and block monitoring," in Proc. Int. Conf. Neural Networks, vol. 3, June 1997, pp. 1936-1941.
    • (1997) Proc. Int. Conf. Neural Networks , vol.3 , pp. 1936-1941
    • Matsuyama, Y.1
  • 20
  • 24
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • C. F. J. Wu, "On the convergence properties of the EM algorithm," Ann. Statist., vol. 11, pp. 95-103, 1883.
    • (1883) Ann. Statist. , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 27
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • X. L. Meng and D. B. Rubin, "Maximum likelihood estimation via the ECM algorithm: A general framework," Biometrika, vol. 80, pp. 267-278, 1993.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 28
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of EM and ECM wuth faster monotone convergence
    • C. Liu and D. B. Rubin, "The ECME algorithm: A simple extension of EM and ECM wuth faster monotone convergence," Biometrika, vol. 81, pp. 633-648, 1994.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.1    Rubin, D.B.2
  • 29
    • 0028517016 scopus 로고
    • Space-alternating generalized expectation-maximization algorithm
    • Oct.
    • J. A. Fessler and A. O. Hero, "Space-alternating generalized expectation-maximization algorithm," IEEE Trans. Signal Processing, vol. 42, pp. 2664-2677, Oct. 1994.
    • (1994) IEEE Trans. Signal Processing , vol.42 , pp. 2664-2677
    • Fessler, J.A.1    Hero, A.O.2
  • 30
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol. 26, pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 31
    • 2342533082 scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • L. Xu and M. I. Jordan, "On convergence properties of the EM algorithm for Gaussian mixtures," Neural Comput., vol. 8, pp. 129-151, 1995.
    • (1995) Neural Comput. , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 32
    • 0030149635 scopus 로고    scopus 로고
    • Harmonic competition: A self-organizing multiple criteria optimization
    • May
    • Y. Matsuyama, "Harmonic competition: A self-organizing multiple criteria optimization," IEEE Trans. Neural Networks, vol. 7, pp. 652-668, May 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 652-668
    • Matsuyama, Y.1
  • 33
    • 0031646494 scopus 로고    scopus 로고
    • Multiple descent cost competition: Restorable self-organization and multimedia information processing
    • Jan.
    • ____, "Multiple descent cost competition: Restorable self-organization and multimedia information processing," IEEE Trans. Neural Networks, vol. 9, pp. 106-122, Jan. 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 106-122
    • Matsuyama, Y.1
  • 34
    • 0001639666 scopus 로고    scopus 로고
    • A hierarchy from α-EM algorithm to vector quantization and self-organization
    • Kita-Kyushu, Japan, Oct.
    • Y. Matsuyama, N. Takeda, S. Furukawa, and T. Niimoto, "A hierarchy from α-EM algorithm to vector quantization and self-organization," in Proc. Int. Conf. Neural Information Processing, vol. 1, Kita-Kyushu, Japan, Oct. 1998, pp. 233-238.
    • (1998) Proc. Int. Conf. Neural Information Processing , vol.1 , pp. 233-238
    • Matsuyama, Y.1    Takeda, N.2    Furukawa, S.3    Niimoto, T.4
  • 35
    • 85140116568 scopus 로고
    • An alternative model for mixtures of experts
    • Cambridge, MA: MIT Press
    • L. Xu, M. I. Jordan, and G. E. Hinton, "An alternative model for mixtures of experts," in Advances in Neural Information Processing. Cambridge, MA: MIT Press, 1995, vol. 7, pp. 633-640.
    • (1995) Advances in Neural Information Processing , vol.7 , pp. 633-640
    • Xu, L.1    Jordan, M.I.2    Hinton, G.E.3
  • 36
    • 0031625481 scopus 로고    scopus 로고
    • Fast α-weighted EM learning for neural networks of module mixtures
    • Anchorage, AK, May
    • Y. Matsuyama, S. Furukawa, N. Takeda, and T. Ikeda, "Fast α-weighted EM learning for neural networks of module mixtures," in Proc. Int. Joint Conf. Neural Networks, vol. 3, Anchorage, AK, May 1998, pp. 2306-2311.
    • (1998) Proc. Int. Joint Conf. Neural Networks , vol.3 , pp. 2306-2311
    • Matsuyama, Y.1    Furukawa, S.2    Takeda, N.3    Ikeda, T.4
  • 38
    • 0029392038 scopus 로고
    • Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithm
    • Oct.
    • J. A. Fessler and A. O. Hero III, "Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithm," IEEE Trans. Image Processing, vol. 4, pp. 1417-1438, Oct. 1995.
    • (1995) IEEE Trans. Image Processing , vol.4 , pp. 1417-1438
    • Fessler, J.A.1    Hero A.O. III2
  • 40
    • 0036088054 scopus 로고    scopus 로고
    • Optimization transfer for computational learning: A hierarchy for f-ICA and alpha-EM to their offsprings
    • Honolulu, HI, May
    • Y. Matsuyama, S. Imahara, and N. Katsumata, "Optimization transfer for computational learning: A hierarchy for f-ICA and alpha-EM to their offsprings," in Proc. Int. Joint Conf. Neural Networks, vol. 3, Honolulu, HI, May 2002, pp. 1883-1888.
    • (2002) Proc. Int. Joint Conf. Neural Networks , vol.3 , pp. 1883-1888
    • Matsuyama, Y.1    Imahara, S.2    Katsumata, N.3
  • 41
    • 84971668244 scopus 로고    scopus 로고
    • Supervised map ICA: Applications to brain functional MRI
    • Singapore, Nov.
    • Y. Matsuyama and R. Kawamura, "Supervised map ICA: Applications to brain functional MRI," in Proc. Int. Conf. Neural Information Processing, vol. 5, Singapore, Nov. 2002, pp. 2259-2263.
    • (2002) Proc. Int. Conf. Neural Information Processing , vol.5 , pp. 2259-2263
    • Matsuyama, Y.1    Kawamura, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.