-
1
-
-
21844496669
-
Chaotic pendulum based on torsion and gravity in opposition
-
Randall D. Peters, "Chaotic pendulum based on torsion and gravity in opposition," Am. J. Phys. 63, 1128-1136 (1995).
-
(1995)
Am. J. Phys.
, vol.63
, pp. 1128-1136
-
-
Peters, R.D.1
-
2
-
-
0031485677
-
A mechanical duffing oscillator for the undergraduate laboratory
-
J. E. Berger, Jr. and G. Nunes, "A mechanical duffing oscillator for the undergraduate laboratory," Am. J. Phys. 65, 841-846 (1997).
-
(1997)
Am. J. Phys.
, vol.65
, pp. 841-846
-
-
Berger J.E., Jr.1
Nunes, G.2
-
3
-
-
0040115313
-
A comparison of commercial chaotic pendulums
-
James A. Blackburn and Gregory L. Baker, "A comparison of commercial chaotic pendulums," Am. J. Phys. 66, 821-830 (1998).
-
(1998)
Am. J. Phys.
, vol.66
, pp. 821-830
-
-
Blackburn, J.A.1
Baker, G.L.2
-
4
-
-
33646618420
-
-
The Chaotic Pendulum and the Rotary Motion Sensor, Pasco Scientific, 10101 Foothills Blvd., Roseville, CA 95747-7100
-
The Chaotic Pendulum and the Rotary Motion Sensor, Pasco Scientific, 10101 Foothills Blvd., Roseville, CA 95747-7100
-
-
-
-
5
-
-
33646625729
-
-
The PCI-6601 timer/counter board, CB-68LP connector block, and R6868 ribbon cable, National Instruments, 11500 N. Mopac Expwy., Austin, TX 38759-3504
-
The PCI-6601 timer/counter board, CB-68LP connector block, and R6868 ribbon cable, National Instruments, 11500 N. Mopac Expwy., Austin, TX 38759-3504 and 〈www.ni.com〉.
-
-
-
-
6
-
-
33646613976
-
-
Our stepper motor system uses a MO61-FD301 Slo-Syn stepper motor (Servo Systems, Co., 115 Main Rd., Montville, NJ 07045-0097 and 〈www.servosystems.com〉) and an Allegro 5804 BiMOS II Unipolar Stepper-Motor Translator/Driver, Allegro MicroSystems, Inc., 115 Northeast Cutoff, Worcester, MA 01606
-
Our stepper motor system uses a MO61-FD301 Slo-Syn stepper motor (Servo Systems, Co., 115 Main Rd., Montville, NJ 07045-0097 and 〈www.servosystems.com〉) and an Allegro 5804 BiMOS II Unipolar Stepper-Motor Translator/Driver, Allegro MicroSystems, Inc., 115 Northeast Cutoff, Worcester, MA 01606 and 〈www.allegromicro.com〉.
-
-
-
-
7
-
-
33646611590
-
-
The LabVIEW programming language, National Instruments, 11500 N. Mopac Expwy., Austin, TX 38759-3504
-
The LabVIEW programming language, National Instruments, 11500 N. Mopac Expwy., Austin, TX 38759-3504 and 〈www.ni.com〉.
-
-
-
-
8
-
-
33646602338
-
-
The University of Florida Advanced Physics Laboratory web site
-
The University of Florida Advanced Physics Laboratory web site is at 〈www.phys.ufl.edu/courses/phy4803L〉.
-
-
-
-
9
-
-
33646603617
-
-
The TISEAN nonlinear time series analysis package can be found
-
The TISEAN nonlinear time series analysis package can be found at 〈www.mpipks-dresden.mpg.de/̃tisean〉.
-
-
-
-
10
-
-
33646609504
-
-
The gnuplot plotting software web site
-
The gnuplot plotting software web site is at 〈www.gnuplot.info〉.
-
-
-
-
11
-
-
0042553279
-
Smoothing and differentiation of data by simplified least squares procedures
-
Abraham Savitsky and Marcel J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627-1639 (1964).
-
(1964)
Anal. Chem.
, vol.36
, pp. 1627-1639
-
-
Savitsky, A.1
Golay, M.J.E.2
-
12
-
-
0000536479
-
Estimation of noise levels for models of chaotic dynamical systems
-
J. P. M. Heald and J. Stark, "Estimation of noise levels for models of chaotic dynamical systems," Phys. Rev. Lett. 84, 2366-2369 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2366-2369
-
-
Heald, J.P.M.1
Stark, J.2
-
13
-
-
33646623017
-
-
note
-
There are small corrections to d = A cos φ that depend on the drive amplitude A and the distance from the motor shaft to the guide hole (60 cm for our setup). For the largest drive amplitude used (A = 6 cm), there will be a 0.15 cm downward shift in the midpoint of the oscillation (from its value for A = 0) and an additional cos 2φ term of amplitude 0.15 cm.
-
-
-
-
14
-
-
0001976684
-
Inverting chaos: Extracting system parameters from experimental data
-
G. L. Baker, J. P. Gollub, and J. A. Blackburn, "Inverting chaos: extracting system parameters from experimental data," Chaos 6, 528-533 (1996).
-
(1996)
Chaos
, vol.6
, pp. 528-533
-
-
Baker, G.L.1
Gollub, J.P.2
Blackburn, J.A.3
-
15
-
-
12044249591
-
The analysis of observed chaotic data in physical systems
-
Henry D. I. Abarbanel, Reggie Brown, John J. Sidorowich, and Lev Sh. Tsimring, "The analysis of observed chaotic data in physical systems," Rev. Mod. Phys. 65, 1331-1392 (1993).
-
(1993)
Rev. Mod. Phys.
, vol.65
, pp. 1331-1392
-
-
Abarbanel, H.D.I.1
Brown, R.2
Sidorowich, J.J.3
Tsimring, L.Sh.4
-
16
-
-
6444240297
-
Liapunov exponents from time series
-
J.-P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, and S. Ciliberto, "Liapunov exponents from time series," Phys. Rev. A 34, 4971-4979 (1986).
-
(1986)
Phys. Rev. A
, vol.34
, pp. 4971-4979
-
-
Eckmann, J.-P.1
Oliffson Kamphorst, S.2
Ruelle, D.3
Ciliberto, S.4
-
17
-
-
33646635259
-
-
note
-
F(u) would also depend on the drive phase φ, and for small enough τ would be given by F(u) = u+ τG(u) where the θ and Ω components of G are the right-hand sides of Eqs. (2a) and (2b), respectively.
-
-
-
-
18
-
-
35949009462
-
Computing the Lyapunov spectrum of a dynamical system from an observed time series
-
Reggie Brown, Paul Bryant, and Henry D. I. Abarbanel, "Computing the Lyapunov spectrum of a dynamical system from an observed time series," Phys. Rev. A 43, 2787-2806 (1991).
-
(1991)
Phys. Rev. A
, vol.43
, pp. 2787-2806
-
-
Brown, R.1
Bryant, P.2
Abarbanel, H.D.I.3
-
19
-
-
0004252232
-
-
(Cambridge U.P., Cambridge), Chap. 5
-
G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction, 2nd ed. (Cambridge U.P., Cambridge, 1996), Chap. 5.
-
(1996)
Chaotic Dynamics: An Introduction, 2nd Ed.
-
-
Baker, G.L.1
Gollub, J.P.2
-
20
-
-
0001640825
-
Chaotic behavior in multidimensional difference equations
-
J. L. Kaplan and J. A. Yorke, "Chaotic behavior in multidimensional difference equations," Lect. Notes Math. 730, 204-227 (1979).
-
(1979)
Lect. Notes Math.
, vol.730
, pp. 204-227
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
21
-
-
0001391710
-
Noise reduction in chaotic time-series data: A survey of common methods
-
Eric J. Kostelich and Thomas Schreiber, "Noise reduction in chaotic time-series data: A survey of common methods," Phys. Rev. E 48, 1752-1763 (1993).
-
(1993)
Phys. Rev. E
, vol.48
, pp. 1752-1763
-
-
Kostelich, E.J.1
Schreiber, T.2
-
22
-
-
4243489552
-
Controlling chaos
-
C. Grebogi, E. Ott, and J. A. Yorke, "Controlling chaos," Phys. Rev. Lett. 64, 1196-1199 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 1196-1199
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
-
23
-
-
21844516603
-
Control of the chaotic driven pendulum
-
Gregory L. Baker, "Control of the chaotic driven pendulum," Am. J. Phys. 63, 832-838 (1995).
-
(1995)
Am. J. Phys.
, vol.63
, pp. 832-838
-
-
Baker, G.L.1
-
24
-
-
0004252232
-
-
(Cambridge U.P., Cambridge), Chap. 6.
-
G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction, 2nd ed. (Cambridge U.P., Cambridge, 1996), Chap. 6.
-
(1996)
Chaotic Dynamics: An Introduction, 2nd Ed.
-
-
Baker, G.L.1
Gollub, J.P.2
|