-
1
-
-
0022799748
-
A simplified mathematical model of tumor growth
-
J.A. Adam, A simplified mathematical model of tumor growth, Math. Biosci. 81 (1986) 229-244.
-
(1986)
Math. Biosci
, vol.81
, pp. 229-244
-
-
Adam, J.A.1
-
2
-
-
0000836987
-
Quasi-linear elliptic-parabolic differential equations
-
H.W. Alt, S. Luckhaus, Quasi-linear elliptic-parabolic differential equations, Math. Z. 183 (1983) 311-341.
-
(1983)
Math. Z
, vol.183
, pp. 311-341
-
-
Alt, H.W.1
Luckhaus, S.2
-
3
-
-
0003442989
-
Analyse Fonctionnelle Theorie et applications
-
Masson, Paris
-
H. Brezis, Analyse Fonctionnelle Theorie et applications, Masson, Paris, 1983.
-
(1983)
-
-
Brezis, H.1
-
4
-
-
0030586186
-
Growth of necrotic tumors in the presence and absence of inhibitors
-
H.M. Byrne, A.J. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci. 135 (1996) 187-216.
-
(1996)
Math. Biosci
, vol.135
, pp. 187-216
-
-
Byrne, H.M.1
Chaplain, A.J.2
-
5
-
-
0030404170
-
Mathematical modelling, simulation and prediction of tumour-induced Angiogenesis
-
A.J. Chaplain, A.R.A. Anderson, Mathematical modelling, simulation and prediction of tumour-induced Angiogenesis, Invasion and Metastasis 16 (1996) 222-234.
-
(1996)
Invasion and Metastasis
, vol.16
, pp. 222-234
-
-
Chaplain, A.J.1
Anderson, A.R.A.2
-
6
-
-
0001446993
-
Unique continuation for parabolic equations
-
Chi-Cheung Poon, Unique continuation for parabolic equations, Commun. Partial Diff. Equations 21 (1996) 521-539.
-
(1996)
Commun. Partial Diff. Equations
, vol.21
, pp. 521-539
-
-
Poon, C.-C.1
-
7
-
-
0010698790
-
Analysis of a mathematical model of effect of inhibitors on the growth of tumors
-
S. Cui, A. Friedman, Analysis of a mathematical model of effect of inhibitors on the growth of tumors, J. Math. Anal. Appl. 236 (1999) 171-206.
-
(1999)
J. Math. Anal. Appl
, vol.236
, pp. 171-206
-
-
Cui, S.1
Friedman, A.2
-
8
-
-
0010697038
-
Analysis of a mathematical model of the growth of the necrotic tumors
-
S. Cui, A. Friedman, Analysis of a mathematical model of the growth of the necrotic tumors, Math. Biosci. 159 (1999) 123-144.
-
(1999)
Math. Biosci
, vol.159
, pp. 123-144
-
-
Cui, S.1
Friedman, A.2
-
9
-
-
4243561685
-
Positive and negative approximate controllability results for semilinear parabolic equations
-
Revista de la Real Academia de Ciencias Exactas, Fisicas y Nat. de Madrid
-
J.I. Díaz, A.M. Ramos, Positive and negative approximate controllability results for semilinear parabolic equations, Revista de la Real Academia de Ciencias Exactas, Fisicas y Nat. de Madrid LXXXIX (1995) 11-30.
-
(1995)
, vol.89
, pp. 11-30
-
-
Díaz, J.I.1
Ramos, A.M.2
-
10
-
-
84862127180
-
On the approximate controllability for higher order parabolic nonlinear equations of Cahn-Hilliard type control and estimation of distributed parameters systems
-
Birkhäuser, Basel
-
J.I. Díaz, A.M. Ramos, On the approximate controllability for higher order parabolic nonlinear equations of Cahn-Hilliard type control and estimation of distributed parameters systems, International Series of Numerical Mathematics, Vol. 126, Birkhäuser, Basel, 1998, pp. 111-127.
-
(1998)
International Series of Numerical Mathematics
, vol.126
, pp. 111-127
-
-
Díaz, J.I.1
Ramos, A.M.2
-
11
-
-
84893361750
-
Numerical experiences regarding the localized control of nonlinear parabolic problems
-
E. Oñate et al. (eds.), The CD-Rom Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000) Barcelona, International Center of Numerical Methods in Engineering
-
J.I. Díaz, A.M. Ramos, Numerical experiences regarding the localized control of nonlinear parabolic problems, in: E. Oñate et al. (eds.), The CD-Rom Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000) Barcelona, International Center of Numerical Methods in Engineering 2000.
-
(2000)
-
-
Díaz, J.I.1
Ramos, A.M.2
-
12
-
-
0010653911
-
A mathematical analysis of a model of the growth of necrotic tumors in presence of inhibitors
-
submitted for publication. (See also I.M.A. Preprints Series #1727, University of Minnesota, October 2000)
-
J.I. Díaz, J.I. Tello, A mathematical analysis of a model of the growth of necrotic tumors in presence of inhibitors, 2001, submitted for publication. (See also I.M.A. Preprints Series #1727, University of Minnesota, October 2000).
-
(2001)
-
-
Díaz, J.I.1
Tello, J.I.2
-
13
-
-
84971109212
-
Approximate controllability of the semilinear heat equation
-
C. Fabre, J.P. Puel, E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh, Sect. A 125 (1995) 31-61.
-
(1995)
Proc. Roy. Soc. Edinburgh, Sect. A
, vol.125
, pp. 31-61
-
-
Fabre, C.1
Puel, J.P.2
Zuazua, E.3
-
14
-
-
0003745828
-
Partial Differential Equations of Parabolic Type
-
Prentice-Hall, Englewood Cliffs, NJ
-
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
-
(1964)
-
-
Friedman, A.1
-
15
-
-
0033094895
-
Analysis of a mathematical model for the growth of tumors
-
A. Friedman, F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol. 38 (1999) 262-284.
-
(1999)
J. Math. Biol
, vol.38
, pp. 262-284
-
-
Friedman, A.1
Reitich, F.2
-
16
-
-
0000561657
-
Exact and approximate controllability for distributed parameter systems, Part II
-
R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter systems, Part II, Acta Numerica (1995) 157-333.
-
(1995)
Acta Numerica
, pp. 157-333
-
-
Glowinski, R.1
Lions, J.L.2
-
17
-
-
0000128125
-
Models of the growth of a solid tumor diffusion
-
H.P. Greenspan, Models of the growth of a solid tumor diffusion, Stud. Appl. Math. 52 (1972) 317-340.
-
(1972)
Stud. Appl. Math
, vol.52
, pp. 317-340
-
-
Greenspan, H.P.1
-
18
-
-
0003223550
-
Linear and quasi-linear equations of parabolic type
-
American Mathematical Society, Providence, RI
-
O.H. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, RI, 1991.
-
(1991)
Translations of Mathematical Monographs
, vol.23
-
-
Ladyzhenskaya, O.H.1
Solonnikov, V.A.2
Uraltseva, N.N.3
-
20
-
-
0003022144
-
Exact controllability for distributed systems: Some trends and some problems
-
J.L. Lions, Exact controllability for distributed systems: some trends and some problems, Appl. Ind. Math. (1991) 59-84.
-
(1991)
Appl. Ind. Math
, pp. 59-84
-
-
Lions, J.L.1
-
21
-
-
4243535442
-
Tratamiento matemático de procesos físicos con difusión y convección
-
Ph.D. Thesis, Universidad Complutense de Madrid, Spain
-
J.I. Tello, Tratamiento matemático de procesos físicos con difusión y convección, Ph.D. Thesis, Universidad Complutense de Madrid, Spain, 2001.
-
(2001)
-
-
Tello, J.I.1
|