-
1
-
-
0004081018
-
-
Technical report RRR-111-95, Rutgers Center for Operations Research, New Brunswick, NJ
-
I. ADLER AND F. ALIZADEH, Primal-Dual Interior Point Algorithms for Convex Quadratically Constrained and Semidefinite Optimization Problems, Technical report RRR-111-95, Rutgers Center for Operations Research, New Brunswick, NJ, 1995.
-
(1995)
Primal-Dual Interior Point Algorithms for Convex Quadratically Constrained and Semidefinite Optimization Problems
-
-
Adler, I.1
Alizadeh, F.2
-
2
-
-
0000215713
-
A new primal-dual interior-point method for semidefinite programming
-
Proceedings of the 5th SIAM Conference on Applied Linear Algebra, Snowbird, UT, J.G. Lewis, ed., SIAM, Philadelphia
-
F. ALIZADEH, J.P. HAEBERLY, AND M.L. OVERTON, A new primal-dual interior-point method for semidefinite programming, in Proceedings of the 5th SIAM Conference on Applied Linear Algebra, Snowbird, UT, J.G. Lewis, ed., Proc. Appl. Math. 72, SIAM, Philadelphia, 1994, pp. 113-117.
-
(1994)
Proc. Appl. Math.
, vol.72
, pp. 113-117
-
-
Alizadeh, F.1
Haeberly, J.P.2
Overton, M.L.3
-
3
-
-
0009969106
-
Symmetric cones, potential reduction methods and word-by-word extensions
-
H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Kluwer Academic Publishers, Boston
-
F. ALIZADEH AND S. SCHMIETA, Symmetric cones, potential reduction methods and word-by-word extensions, in Handbook of Semidefinite Programming (Theory, Algorithms and Applications), H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Kluwer Academic Publishers, Boston, 2000, pp. 195-234.
-
(2000)
Handbook of Semidefinite Programming (Theory, Algorithms and Applications)
, pp. 195-234
-
-
Alizadeh, F.1
Schmieta, S.2
-
4
-
-
0003832298
-
-
Technical report, Faculty of Information Technology and System, Delft University of Technology, Delft, The Netherlands
-
E.D. ANDERSEN, C. ROOS, AND T. TERLAKY, On Implementing a Primal-Dual Interior-Point Method for Conic Quadratic Optimization, Technical report, Faculty of Information Technology and System, Delft University of Technology, Delft, The Netherlands, 2000.
-
(2000)
On Implementing a Primal-Dual Interior-Point Method for Conic Quadratic Optimization
-
-
Andersen, E.D.1
Roos, C.2
Terlaky, T.3
-
5
-
-
0003878614
-
Lectures on modern convex optimization. Analysis, algorithms, and engineering applications
-
SIAM, Philadelphia
-
A. BEN-TAL AND A. NEMIROVSKI, Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications, MPS-SIAM Ser. Optim. MP02, SIAM, Philadelphia, 2001.
-
(2001)
MPS-SIAM Ser. Optim. MP02
-
-
Ben-Tal, A.1
Nemirovski, A.2
-
6
-
-
0004257284
-
-
Oxford University Press, London, Oxford, UK
-
J. FARAUT AND A. KORÁNYI, Analysis on Symmetric Cones, Oxford University Press, London, Oxford, UK, 1994.
-
(1994)
Analysis on Symmetric Cones
-
-
Faraut, J.1
Korányi, A.2
-
7
-
-
0007637669
-
Euclidean Jordan algebras and interior-point algorithms
-
L. FAYBUSOVICH, Euclidean Jordan algebras and interior-point algorithms, Positivity, 1 (1997), pp. 331-357.
-
(1997)
Positivity
, vol.1
, pp. 331-357
-
-
Faybusovich, L.1
-
8
-
-
0003408797
-
-
Technical report, Department of Mathematics, University of Notre Dame, Notre Dame, IN
-
L. FAYBUSOVICH, A Jordan-Algebraic Approach to Potential-Reduction Algorithms, Technical report, Department of Mathematics, University of Notre Dame, Notre Dame, IN, 1998.
-
(1998)
A Jordan-Algebraic Approach to Potential-Reduction Algorithms
-
-
Faybusovich, L.1
-
9
-
-
0036013023
-
Smoothing functions for second-order-cone complementarity problems
-
M. FUKUSHIMA, Z.Q. LUO, AND P. TSENG, Smoothing functions for second-order-cone complementarity problems, SIAM J. Optim., 12 (2001), pp. 436-460.
-
(2001)
SIAM J. Optim.
, vol.12
, pp. 436-460
-
-
Fukushima, M.1
Luo, Z.Q.2
Tseng, P.3
-
10
-
-
51249181779
-
A new polynomial-time algorithm for linear programming
-
N.K. KARMARKAR, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), pp. 373-395.
-
(1984)
Combinatorica
, vol.4
, pp. 373-395
-
-
Karmarkar, N.K.1
-
11
-
-
0003459683
-
-
Ph.D. Thesis, Faculty of ITS/TWI, Delft University of Technology, Delft, The Netherlands
-
E. DE KLERK, Interior Point Methods for Semidefinite Programming, Ph.D. Thesis, Faculty of ITS/TWI, Delft University of Technology, Delft, The Netherlands, 1997.
-
(1997)
Interior Point Methods for Semidefinite Programming
-
-
De Klerk, E.1
-
12
-
-
0041940559
-
Applications of second-order cone programming
-
M.S. LOBO, L. VANDENBERGHE, S. BOYD, AND H. LEBRET, Applications of second-order cone programming, Linear Algebra Appl., 284 (1998), pp. 193-228.
-
(1998)
Linear Algebra Appl.
, vol.284
, pp. 193-228
-
-
Lobo, M.S.1
Vandenberghe, L.2
Boyd, S.3
Lebret, H.4
-
13
-
-
0001856065
-
Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions
-
R.D.C. MONTEIRO AND T. TSUCHIYA, Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions, Math. Program., 88 (2000), pp. 61-83.
-
(2000)
Math. Program.
, vol.88
, pp. 61-83
-
-
Monteiro, R.D.C.1
Tsuchiya, T.2
-
14
-
-
0000809108
-
Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic programming
-
A.S. NEMIROVSKII AND K. SCHEINBERG, Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic programming, Math. Programming, 72 (1996), pp. 273-289.
-
(1996)
Math. Programming
, vol.72
, pp. 273-289
-
-
Nemirovskii, A.S.1
Scheinberg, K.2
-
15
-
-
0003254248
-
Interior point polynomial algorithms in convex programming
-
SIAM, Philadelphia
-
Y. NESTEROV AND A. NEMIROVSKII, Interior Point Polynomial Algorithms in Convex Programming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, 1994.
-
(1994)
SIAM Stud. Appl. Math.
, vol.13
-
-
Nesterov, Y.1
Nemirovskii, A.2
-
16
-
-
0031073753
-
Self-scaled barriers and interior-point methods for convex programming
-
Y.E. NESTEROV AND M.J. TODD, Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22 (1997), pp. 1-42.
-
(1997)
Math. Oper. Res.
, vol.22
, pp. 1-42
-
-
Nesterov, Y.E.1
Todd, M.J.2
-
17
-
-
0032222088
-
Primal-dual interior-point methods for self-scaled cones
-
Y.E. NESTEROV AND M.J. TODD, Primal-dual interior-point methods for self-scaled cones, SIAM J. Optim., 8 (1998), pp. 324-364.
-
(1998)
SIAM J. Optim.
, vol.8
, pp. 324-364
-
-
Nesterov, Y.E.1
Todd, M.J.2
-
18
-
-
0004009530
-
-
Ph.D. thesis, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands
-
J. PENG, New Design and Analysis of Interior-Point Methods, Ph.D. thesis, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 2001.
-
(2001)
New Design and Analysis of Interior-Point Methods
-
-
Peng, J.1
-
19
-
-
0013503414
-
A new class of polynomial primal-dual methods for linear and semidefinite optimization
-
to appear
-
J. PENG, C. ROOS, AND T. TERLAKY, A new class of polynomial primal-dual methods for linear and semidefinite optimization, European J. Oper. Res., to appear.
-
European J. Oper. Res.
-
-
Peng, J.1
Roos, C.2
Terlaky, T.3
-
20
-
-
0013543224
-
Self-regular proximities and new search directions for linear and semidefinite optimization
-
to appear
-
J. PENG, C. ROOS, AND T. TERLAKY, Self-regular proximities and new search directions for linear and semidefinite optimization, Math. Programming, to appear.
-
Math. Programming
-
-
Peng, J.1
Roos, C.2
Terlaky, T.3
-
22
-
-
0035435165
-
Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones
-
S. SCHMIETA AND F. ALIZADEH, Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones, Math. Oper. Res., 26 (2001), pp. 543-564.
-
(2001)
Math. Oper. Res.
, vol.26
, pp. 543-564
-
-
Schmieta, S.1
Alizadeh, F.2
-
23
-
-
0013543225
-
-
Technical report RRR 13-99, Rutgers Center for Operations Research, Rutgers University, Piscataway, NJ
-
S. SCHMIETA AND F. ALIZADEH, Extension of Primal-Dual Interior-Point Algorithms to Symmetric Cones, Technical report RRR 13-99, Rutgers Center for Operations Research, Rutgers University, Piscataway, NJ, 1999.
-
(1999)
Extension of Primal-Dual Interior-Point Algorithms to Symmetric Cones
-
-
Schmieta, S.1
Alizadeh, F.2
-
24
-
-
0001871029
-
Theory and algorithms of semidefinite programming
-
H. Frenk, C. Roos, T. Terlaky, and S. Zhang, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands
-
J. STURM, Theory and algorithms of semidefinite programming, in High Performance Optimization, H. Frenk, C. Roos, T. Terlaky, and S. Zhang, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 3-194.
-
(1999)
High Performance Optimization
, pp. 3-194
-
-
Sturm, J.1
-
26
-
-
0033293480
-
A convergent analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming
-
T. TSUCHIYA, A convergent analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optim. Methods Softw., 11/12 (1999), pp. 141-182.
-
(1999)
Optim. Methods Softw.
, vol.11-12
, pp. 141-182
-
-
Tsuchiya, T.1
-
27
-
-
0003395487
-
-
Kluwer Academic Publishers, Boston
-
H. WOLKOWICZ, R. SAIGAL, AND L. VANDENBERGHE, EDS., Handbook of Semidefinite Programming (Theory, Algorithms and Applications), Kluwer Academic Publishers, Boston, 2000.
-
(2000)
Handbook of Semidefinite Programming (Theory, Algorithms and Applications)
-
-
Wolkowicz, H.1
Saigal, R.2
Vandenberghe, L.3
|