|
Volumn 31, Issue 1, 2003, Pages 261-266
|
Estimation of pulmonary artery occlusion pressure by an artificial neural network
a a b a a a a |
Author keywords
Artificial intelligence; Hemodynamic monitoring; Pulmonary artery occlusion pressure
|
Indexed keywords
HISTAMINE;
SEROTONIN;
ADAPTATION;
ANIMAL EXPERIMENT;
ANIMAL MODEL;
ARTICLE;
ARTIFICIAL INTELLIGENCE;
ARTIFICIAL NEURAL NETWORK;
CONTROLLED STUDY;
CORRELATION COEFFICIENT;
CRITICAL ILLNESS;
DATA ANALYSIS;
DIAGNOSTIC ACCURACY;
DIASTOLIC BLOOD PRESSURE;
FEMALE;
HEMODYNAMIC MONITORING;
LEARNING;
LUNG ARTERY PRESSURE;
LUNG HEMODYNAMICS;
MALE;
NONHUMAN;
PATIENT MONITORING;
PRIORITY JOURNAL;
PULMONARY ARTERY;
PULMONARY ARTERY OCCLUSION PRESSURE;
WAVEFORM;
ANIMALS;
BLOOD PRESSURE DETERMINATION;
DIAGNOSIS, COMPUTER-ASSISTED;
DOGS;
HEMODYNAMIC PROCESSES;
LINEAR MODELS;
NEURAL NETWORKS (COMPUTER);
PULMONARY WEDGE PRESSURE;
SIGNAL PROCESSING, COMPUTER-ASSISTED;
|
EID: 0037247848
PISSN: 00903493
EISSN: None
Source Type: Journal
DOI: 10.1097/00003246-200301000-00041 Document Type: Article |
Times cited : (8)
|
References (13)
|