메뉴 건너뛰기




Volumn 38, Issue 1, 2003, Pages 1-17

Performance analysis for machine-learning experiments using small data sets

Author keywords

Algorithm configuration; Analysis of variance; Data preprocessing; Decision tree induction; Machine learning; ROC curves

Indexed keywords

AGRICULTURE; ALGORITHMS; DATA PROCESSING; GRAPHIC METHODS; NEURAL NETWORKS; NUTRITION; PERFORMANCE;

EID: 0037243907     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-1699(02)00104-7     Document Type: Article
Times cited : (30)

References (27)
  • 1
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30, 1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 4
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T.G., 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 6
    • 0001777104 scopus 로고
    • Methods for comparison
    • Michie, D., Spiegelhalter, D.J., Taylor, C.C. (Eds.). Ellis Horwood, Hemel Hempstead, UK
    • Henery, R.J., 1994. Methods for comparison. In: Michie, D., Spiegelhalter, D.J., Taylor, C.C. (Eds.), Machine Learning, Neural and Statistical Classification. Ellis Horwood, Hemel Hempstead, UK, pp. 107-124.
    • (1994) Machine Learning, Neural and Statistical Classification , pp. 107-124
    • Henery, R.J.1
  • 7
    • 0001130002 scopus 로고    scopus 로고
    • Multi-layer neural networks for image analysis of agricultural products
    • Jayas, D.S., Paliwal, J., Visen, N.S., 2000. Multi-layer neural networks for image analysis of agricultural products. J. Agric. Eng. Res. 77, 119-128.
    • (2000) J. Agric. Eng. Res. , vol.77 , pp. 119-128
    • Jayas, D.S.1    Paliwal, J.2    Visen, N.S.3
  • 8
    • 0032846871 scopus 로고    scopus 로고
    • Kim, T., Heald, C.W., 1999. Inducing inference rules for the classification of bovine mastitis. Comput. Electron. Agric. 23, 27-42.
    • (1999) Comput. Electron. Agric. , vol.23 , pp. 27-42
    • Kim, T.1    Heald, C.W.2
  • 9
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R.C., Matwin, S., 1998. Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30, 195-215.
    • (1998) Mach. Learn. , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 10
    • 0029368068 scopus 로고
    • Prediction of cow performance with a connectionist model
    • Lacroix, R., Wade, K.M., Kok, R., Hayes, J.F., 1995. Prediction of cow performance with a connectionist model. Trans. ASAE 38, 1573-1579.
    • (1995) Trans. ASAE , vol.38 , pp. 1573-1579
    • Lacroix, R.1    Wade, K.M.2    Kok, R.3    Hayes, J.F.4
  • 11
    • 0029407395 scopus 로고
    • Applications of machine learning and rule induction
    • Langley, P., Simon, H.A., 1995. Applications of machine learning and rule induction. Commun. ACM 38 (11), 55-64.
    • (1995) Commun. ACM , vol.38 , Issue.11 , pp. 55-64
    • Langley, P.1    Simon, H.A.2
  • 14
    • 0042538910 scopus 로고    scopus 로고
    • An investigation into the use of machine learning for determining oestrus in cows
    • Mitchell, R.S., Sherlock, R.A., Smith, L.A., 1996. An investigation into the use of machine learning for determining oestrus in cows. Comput. Electron. Agric. 15, 195-213.
    • (1996) Comput. Electron. Agric. , vol.15 , pp. 195-213
    • Mitchell, R.S.1    Sherlock, R.A.2    Smith, L.A.3
  • 16
    • 0035293312 scopus 로고    scopus 로고
    • A case-acquisition and decision-support system for the analysis of group-average lactation curves
    • Pietersma, D., Lacroix, R., Lefebvre, D., Block, E., Wade, K.M., 2001. A case-acquisition and decision-support system for the analysis of group-average lactation curves. J. Dairy Sci. 84, 730-739.
    • (2001) J. Dairy Sci. , vol.84 , pp. 730-739
    • Pietersma, D.1    Lacroix, R.2    Lefebvre, D.3    Block, E.4    Wade, K.M.5
  • 17
    • 0037238954 scopus 로고    scopus 로고
    • Induction and evaluation of decision trees for lactation curve analysis
    • Pietersma, D., Lacroix, R., Lefebvre, D., Wade, K.M., 2002. Induction and evaluation of decision trees for lactation curve analysis. Comput. Electron. Agric. 38, 19-32.
    • (2002) Comput. Electron. Agric. , vol.38 , pp. 19-32
    • Pietersma, D.1    Lacroix, R.2    Lefebvre, D.3    Wade, K.M.4
  • 18
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Shavlik, J. (Ed.), July 24-27, Madison, WI. Morgan Kaufmann, San Francisco, CA
    • Provost, F., Fawcett, T., Kohavi, R., 1998. The case against accuracy estimation for comparing induction algorithms. In: Shavlik, J. (Ed.), Proceeding of 15th International Conference Machine Learning, July 24-27, Madison, WI. Morgan Kaufmann, San Francisco, CA, pp. 445-453.
    • (1998) Proceeding of 15th International Conference Machine Learning , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 19
    • 0034283040 scopus 로고    scopus 로고
    • Development of neuro-fuzzifiers for qualitative analyses of milk yield
    • Salehi, F., Lacroix, R., Wade, K.M., 2000. Development of neuro-fuzzifiers for qualitative analyses of milk yield. Comput. Electron. Agric. 28, 171-186.
    • (2000) Comput. Electron. Agric. , vol.28 , pp. 171-186
    • Salehi, F.1    Lacroix, R.2    Wade, K.M.3
  • 20
    • 0034306915 scopus 로고    scopus 로고
    • Neural networks in agroecological modelling-stylish application or helpful tool?
    • Schultz, A., Wieland, R., Lutze, G., 2000. Neural networks in agroecological modelling-stylish application or helpful tool? Comput. Electron. Agric. 29, 73-97.
    • (2000) Comput. Electron. Agric. , vol.29 , pp. 73-97
    • Schultz, A.1    Wieland, R.2    Lutze, G.3
  • 23
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240, 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 24
    • 0031392742 scopus 로고    scopus 로고
    • Process models for neural network applications in agriculture
    • Verdenius, F., Timmermans, A.J.M., Schouten, R.E., 1997. Process models for neural network applications in agriculture. AI Appl. 11 (3), 31-45.
    • (1997) AI Appl. , vol.11 , Issue.3 , pp. 31-45
    • Verdenius, F.1    Timmermans, A.J.M.2    Schouten, R.E.3
  • 27
    • 0033169159 scopus 로고    scopus 로고
    • Neural detection of mastitis from dairy herd improvement records
    • Yang, X.Z., Lacroix, R., Wade, K.M., 1999. Neural detection of mastitis from dairy herd improvement records. Trans. ASAE 42, 1063-1071.
    • (1999) Trans. ASAE , vol.42 , pp. 1063-1071
    • Yang, X.Z.1    Lacroix, R.2    Wade, K.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.