메뉴 건너뛰기




Volumn 24, Issue 1-3, 2003, Pages 97-112

An unsupervised and non-parametric bayesian classifier

Author keywords

Classification error probability; Expectation maximization; Orthogonal probability density function estimation; Smoothing parameter; Unsupervised non parametric Bayesian classifier

Indexed keywords

COMPUTER SIMULATION; ESTIMATION; FOURIER TRANSFORMS; IMAGE SEGMENTATION; PROBABILITY DENSITY FUNCTION;

EID: 0037230868     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(02)00193-9     Document Type: Article
Times cited : (22)

References (25)
  • 2
    • 0003126626 scopus 로고
    • Global and local methods of unsupervised Bayesian segmentation of images
    • Braathen, B., Pieczynski, W., Masson, P., 1993. Global and local methods of unsupervised Bayesian segmentation of images. Machine Graph. Vis. 2, 39-52.
    • (1993) Machine Graph. Vis. , vol.2 , pp. 39-52
    • Braathen, B.1    Pieczynski, W.2    Masson, P.3
  • 3
    • 0031103069 scopus 로고    scopus 로고
    • Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation
    • Caillol, H., Pieczynski, W., Hillion, A., 1997. Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation. IEEE Trans. Image Processing 6, 425-440.
    • (1997) IEEE Trans. Image Processing , vol.6 , pp. 425-440
    • Caillol, H.1    Pieczynski, W.2    Hillion, A.3
  • 4
    • 0024855884 scopus 로고
    • An iterative Gibbsian technique for reconstruction of m-ary images
    • Chalmond, B., 1989. An iterative Gibbsian technique for reconstruction of m-ary images. Pattern recognition 22, 747-761.
    • (1989) Pattern Recognition , vol.22 , pp. 747-761
    • Chalmond, B.1
  • 5
    • 0031248959 scopus 로고    scopus 로고
    • Estimation of generalized mixtures and its application in image segmentation
    • Delignon, Y., Marzouki, A., Pieczynski, W., 1997. Estimation of Generalized Mixtures and Its Application in Image Segmentation. IEEE Trans. On Image Processing 6 (10), 1364-1375.
    • (1997) IEEE Trans. On Image Processing , vol.6 , Issue.10 , pp. 1364-1375
    • Delignon, Y.1    Marzouki, A.2    Pieczynski, W.3
  • 7
    • 0347653186 scopus 로고
    • Comparison of two orthogonal series methods of estimating a density and its derivatives on an interval
    • Hall, P., 1982. Comparison of two orthogonal series methods of estimating a density and its derivatives on an interval. Journal of multivariate analysis 12, 432-449.
    • (1982) Journal of Multivariate Analysis , vol.12 , pp. 432-449
    • Hall, P.1
  • 11
    • 0012496215 scopus 로고
    • Calculation of bayes' recognition error for two multivariate gaussian distributions
    • Keinosuke, Fukunaga, Krile, T.F., 1969. Calculation of Bayes' Recognition Error for Two Multivariate Gaussian Distributions. IEEE Tran. on Com. C-18 (3), 220-229.
    • (1969) IEEE Tran. on Com , vol.18 C , Issue.3 , pp. 220-229
    • Keinosuke, F.1    Krile, T.F.2
  • 14
    • 0000319005 scopus 로고
    • The estimation of probability and cumulative by Fourier series methods
    • Kronmal, R., Derin, H., Harch, K.D., 1968. The estimation of probability and cumulative by Fourier series methods. J. Amer Statist. Ass 63, 925-952.
    • (1968) J. Amer Statist. Ass , vol.63 , pp. 925-952
    • Kronmal, R.1    Derin, H.2    Harch, K.D.3
  • 15
    • 0027591549 scopus 로고
    • SEM algorithm and unsupervised statistical segmentation of satellite images
    • Masson, P., Pieczynski, W., 1993. SEM Algorithm and Unsupervised Statistical Segmentation of Satellite Images. IEEE Trans. Geosci. Remote Sensing 31, 618-633.
    • (1993) IEEE Trans. Geosci. Remote Sensing , vol.31 , pp. 618-633
    • Masson, P.1    Pieczynski, W.2
  • 16
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • Pal, N.R., Pal, S.K., 1993. A review on image segmentation techniques. Pattern Recognition 26 (9), 1277-1294.
    • (1993) Pattern Recognition , vol.26 , Issue.9 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 17
    • 0001024861 scopus 로고
    • Adaptive mixture estimation and unsupervised local Bayesian image segmentation
    • Peng, A., Pieczynski, W., 1995. Adaptive mixture estimation and unsupervised local Bayesian image segmentation. Graph. Models Image Processing 57, 389-399.
    • (1995) Graph. Models Image Processing , vol.57 , pp. 389-399
    • Peng, A.1    Pieczynski, W.2
  • 18
    • 0028494417 scopus 로고
    • Non-parametric probability density function estimation on a bounded support: Applications to shape classification and speech coding
    • Saoudi, S., Ghorbel, F., Hillion, A., 1994. Non-parametric probability density function estimation on a bounded support: Applications to shape classification and speech coding. Applied Stochastic models and data analysis 10, 215-231.
    • (1994) Applied Stochastic Models and Data Analysis , vol.10 , pp. 215-231
    • Saoudi, S.1    Ghorbel, F.2    Hillion, A.3
  • 19
    • 0000355193 scopus 로고
    • Parametric inference for imperfectly observed Gibbsian fields
    • Younes, L., 1989. Parametric inference for imperfectly observed Gibbsian fields. Prob. Theory Related Fields 82, 625-645.
    • (1989) Prob. Theory Related Fields , vol.82 , pp. 625-645
    • Younes, L.1
  • 20
    • 44049114806 scopus 로고
    • Unsupervised segmentation of noisy and textured images using Markov random fields
    • Won, C.S., Derin, H., 1992. Unsupervised segmentation of noisy and textured images using Markov random fields. CVGIP: Graphical models and Image Processing 54 (4), 308-328.
    • (1992) CVGIP: Graphical Models and Image Processing , vol.54 , Issue.4 , pp. 308-328
    • Won, C.S.1    Derin, H.2
  • 21
    • 0027308049 scopus 로고
    • The mean field theory in EM procedures for blind Markov random field image restoration
    • Zhang, Y.J., 1993. The mean field theory in EM procedures for blind Markov random field image restoration. IEEE Trans. Image Processing 2, 27-40.
    • (1993) IEEE Trans. Image Processing , vol.2 , pp. 27-40
    • Zhang, Y.J.1
  • 22
    • 0028466714 scopus 로고
    • Maximum likelihood parameter estimation for unsupervised stochastic model-based image segmentation
    • Zhang, Y.J., Modestino, J.W., Langan, D.A., 1994. Maximum likelihood parameter estimation for unsupervised stochastic model-based image segmentation. IEEE Trans. Image Processing 3, 404-420.
    • (1994) IEEE Trans. Image Processing , vol.3 , pp. 404-420
    • Zhang, Y.J.1    Modestino, J.W.2    Langan, D.A.3
  • 23
    • 0031247240 scopus 로고    scopus 로고
    • Evaluation and comparison of different segmentation algorithms
    • Zhang, Y.J., 1997. Evaluation and comparison of different segmentation algorithms. Pattern Recognition Letters 18, 963-974.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 963-974
    • Zhang, Y.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.