-
1
-
-
0002811289
-
Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Sholosman regime
-
Percolation theory and ergodic theory of infinite particle systems (H. Kesten, ed.), Springer, Berlin-Heidelberg-New York
-
M. Aizenman and R. Holley, Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Sholosman regime, Percolation theory and ergodic theory of infinite particle systems (H. Kesten, ed.), IMS Volume in Math, and Appl. 8, Springer, Berlin-Heidelberg-New York (1987), pp. 1-11.
-
(1987)
IMS Volume in Math, and Appl.
, vol.8
, pp. 1-11
-
-
Aizenman, M.1
Holley, R.2
-
2
-
-
0038717760
-
Ground states of the XY-model
-
H. Araki and T. Matsui, Ground states of the XY-model, Commun. Math. Phys., 101 (1985), 213-245.
-
(1985)
Commun. Math. Phys.
, vol.101
, pp. 213-245
-
-
Araki, H.1
Matsui, T.2
-
3
-
-
0034390399
-
Asymptotics of Plancherel measures for symmetric groups
-
A. Borodin, A. Okounkov and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc., 13 (2000), no. 3, 481-515.
-
(2000)
J. Amer. Math. Soc.
, vol.13
, Issue.3
, pp. 481-515
-
-
Borodin, A.1
Okounkov, A.2
Olshanski, G.3
-
6
-
-
0003271843
-
Gibbs measures and phase transitions
-
Walter de Gruyter, Berlin-New York
-
H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics 9, Walter de Gruyter, Berlin-New York, 1988.
-
(1988)
De Gruyter Studies in Mathematics
, vol.9
-
-
Georgii, H.-O.1
-
7
-
-
0001429116
-
Logarithmic Sobolev inequalities
-
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1976), 1061-1083.
-
(1976)
Amer. J. Math.
, vol.97
, pp. 1061-1083
-
-
Gross, L.1
-
9
-
-
0001675226
-
A covariance estimate for Gibbs measures
-
H. Föllmer, A covariance estimate for Gibbs measures, J. Funct. Anal., 46 (1982), 387-395.
-
(1982)
J. Funct. Anal.
, vol.46
, pp. 387-395
-
-
Föllmer, H.1
-
12
-
-
21844507857
-
Hypercontractivité pour des systemes de spins de porté e infinie
-
E. Laroche, Hypercontractivité pour des systemes de spins de porté e infinie, Prob. Th. Rel. Fields, 101 (1995), 89-132.
-
(1995)
Prob. Th. Rel. Fields
, vol.101
, pp. 89-132
-
-
Laroche, E.1
-
14
-
-
21144481999
-
Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics
-
S. L. Lu and H. T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Commun. Math. Phys., 156 (1993), 399-433.
-
(1993)
Commun. Math. Phys.
, vol.156
, pp. 399-433
-
-
Lu, S.L.1
Yau, H.T.2
-
15
-
-
0016486888
-
The coincidence approach to stochastic point processes
-
O. Macchi, The coincidence approach to stochastic point processes, Adv. Appl. Prob., 7 (1975), 83-122.
-
(1975)
Adv. Appl. Prob.
, vol.7
, pp. 83-122
-
-
Macchi, O.1
-
16
-
-
0001889926
-
The fermion process - A model of stochastic point process with repulsive points
-
(Tech. Univ. Prague, Prague, 1974)
-
O. Macchi, The fermion process - a model of stochastic point process with repulsive points, Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974), Vol. A (1977), pp. 391-398.
-
(1977)
Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians
, vol.A
, pp. 391-398
-
-
Macchi, O.1
-
17
-
-
0012268219
-
Explicit formulas for correlation functions of ground states of the 1 dimensional XY-model
-
T. Matsui, Explicit formulas for correlation functions of ground states of the 1 dimensional XY-model, Ann. Inst. Henri Poincaré, 45 (1) (1986), 49-59.
-
(1986)
Ann. Inst. Henri Poincaré
, vol.45
, Issue.1
, pp. 49-59
-
-
Matsui, T.1
-
18
-
-
0001902871
-
Lectures on Glauber dynamics for discrete spin models
-
F. Martinelli, Lectures on Glauber dynamics for discrete spin models, Lecture Note in Math. 1717 (1997), 93-191.
-
(1997)
Lecture Note in Math.
, vol.1717
, pp. 93-191
-
-
Martinelli, F.1
-
20
-
-
0030526567
-
Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions
-
H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions, Commun. Math. Phys., 176 (1996), 117-131.
-
(1996)
Commun. Math. Phys.
, vol.176
, pp. 117-131
-
-
Osada, H.1
-
22
-
-
84923746423
-
Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties
-
T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties, to appear in Annals. of prob.
-
Annals. of Prob.
-
-
Shirai, T.1
Takahashi, Y.2
-
23
-
-
84966240844
-
A remark on Nelson's best hypercontractive estimates
-
B. Simon, A remark on Nelson's best hypercontractive estimates, Proc. Amer. Math. Soc., 55 (1975), 376-378.
-
(1975)
Proc. Amer. Math. Soc.
, vol.55
, pp. 376-378
-
-
Simon, B.1
-
24
-
-
0034556390
-
Determinantal random point fields
-
A. Soshnikov, Determinantal random point fields, Russian Math. Surveys, 55 (2000), 923-975.
-
(2000)
Russian Math. Surveys
, vol.55
, pp. 923-975
-
-
Soshnikov, A.1
-
25
-
-
0001362231
-
Interacting Brownian particles: A study of Dyson's model
-
Hydrodynamic Behavior and Interacting Particle Systems (G. Papanicalaou, ed.), Springer, New York
-
H. Spohn, Interacting Brownian Particles: A Study of Dyson's Model, Hydrodynamic Behavior and Interacting Particle Systems (G. Papanicalaou, ed.), IMA Vol. Math. Appl. 9, Springer, New York (1987), pp. 151-179.
-
(1987)
IMA Vol. Math. Appl.
, vol.9
, pp. 151-179
-
-
Spohn, H.1
-
26
-
-
0000284028
-
The logarithmic Sobolev inequality for discrete spin systems on a lattice
-
D. W. Stroock and B. Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on a lattice, Commun. Math. Phys., 149 (1992), 175-193.
-
(1992)
Commun. Math. Phys.
, vol.149
, pp. 175-193
-
-
Stroock, D.W.1
Zegarlinski, B.2
-
27
-
-
0001530568
-
The equivalence of the logarithmic Sobolev inequality and Dobrushin-Shlosman mixing condition
-
D. W. Stroock and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and Dobrushin-Shlosman mixing condition, Commun. Math. Phys., 144 (1992), 303-323.
-
(1992)
Commun. Math. Phys.
, vol.144
, pp. 303-323
-
-
Stroock, D.W.1
Zegarlinski, B.2
|