메뉴 건너뛰기




Volumn 52, Issue 2, 2003, Pages 557-572

Existence theory for functional p-Laplacian equations with variable exponents

Author keywords

Boundary value problems; Functional equations; Nonlinear equations; p Laplacian; Upper and lower solutions

Indexed keywords

BOUNDARY CONDITIONS; BOUNDARY VALUE PROBLEMS; DIFFERENTIAL EQUATIONS; LAPLACE TRANSFORMS;

EID: 0037209798     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(02)00122-0     Document Type: Article
Times cited : (30)

References (18)
  • 1
    • 0000194665 scopus 로고
    • Sur et sous-solutions généralisées et problèmes aux limites du second ordre
    • Adje A. Sur et sous-solutions généralisées et problèmes aux limites du second ordre. Bull. Soc. Math. Bel. Sér. B. 42:1990;347-368.
    • (1990) Bull. Soc. Math. Bel. Sér. B , vol.42 , pp. 347-368
    • Adje, A.1
  • 2
    • 0034692250 scopus 로고    scopus 로고
    • Optimal existence conditions for φ-Laplacian equations with upper and lower solutions in the reversed order
    • Cabada A., Habets P., Pouso R.L. Optimal existence conditions for. φ -Laplacian equations with upper and lower solutions in the reversed order J. Differential Equations. 166(2):2000;385-401.
    • (2000) J. Differential Equations , vol.166 , Issue.2 , pp. 385-401
    • Cabada, A.1    Habets, P.2    Pouso, R.L.3
  • 3
    • 0032715611 scopus 로고    scopus 로고
    • Existence result for the problem (φ(u′))′ = f(t,u,u′) with nonlinear boundary conditions
    • Cabada A., Pouso R.L. Existence result for the problem. (φ(u′))′ = f(t,u,u′) with nonlinear boundary conditions Nonlinear Anal. 35:1999;221-231.
    • (1999) Nonlinear Anal. , vol.35 , pp. 221-231
    • Cabada, A.1    Pouso, R.L.2
  • 4
    • 0342520743 scopus 로고    scopus 로고
    • Extremal solutions of strongly nonlinear discontinuous second order equations with nonlinear functional boundary conditions
    • Cabada A., Pouso R.L. Extremal solutions of strongly nonlinear discontinuous second order equations with nonlinear functional boundary conditions. Nonlinear Anal. 42(8):2000;1377-1396.
    • (2000) Nonlinear Anal. , vol.42 , Issue.8 , pp. 1377-1396
    • Cabada, A.1    Pouso, R.L.2
  • 6
    • 0001328382 scopus 로고
    • Pairs of positive solutions for the one-dimensional p-Laplacian
    • De Coster C. Pairs of positive solutions for the one-dimensional. p -Laplacian Nonlinear Anal. 23:1994;669-681.
    • (1994) Nonlinear Anal. , vol.23 , pp. 669-681
    • De Coster, C.1
  • 9
    • 0011118986 scopus 로고    scopus 로고
    • Maximum principles and uniqueness results for phi-Laplacian boundary value problems
    • S. Heikkilä, S. Seikkala, Maximum principles and uniqueness results for phi-Laplacian boundary value problems, J. Inequalities Appl. 6 (3) (2000) 339-357.
    • (2000) J. Inequalities Appl. , vol.6 , Issue.3 , pp. 339-357
    • Heikkilä, S.1    Seikkala, S.2
  • 10
    • 0004081871 scopus 로고
    • Cambridge University Press, Cambridge
    • Lloyd N.G. Degree Theory. 1978;Cambridge University Press, Cambridge.
    • (1978) Degree Theory
    • Lloyd, N.G.1
  • 11
    • 0001688579 scopus 로고    scopus 로고
    • Periodic solutions for nonlinear systems with p-Laplacian-like operators
    • Manásevich R., Mawhin J. Periodic solutions for nonlinear systems with. p -Laplacian-like operators J. Differential Equations. 145(2):1998;367-393.
    • (1998) J. Differential Equations , vol.145 , Issue.2 , pp. 367-393
    • Manásevich, R.1    Mawhin, J.2
  • 12
    • 38249004025 scopus 로고
    • Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian
    • Manásevich R., Zanolin F. Time-mappings and multiplicity of solutions for the one-dimensional. p -Laplacian Nonlinear Anal. 21:1993;269-291.
    • (1993) Nonlinear Anal. , vol.21 , pp. 269-291
    • Manásevich, R.1    Zanolin, F.2
  • 13
    • 0004294298 scopus 로고
    • Princeton University Press, Princeton
    • McShane E.J. Integration. 1967;Princeton University Press, Princeton.
    • (1967) Integration
    • McShane, E.J.1
  • 14
    • 0001662218 scopus 로고
    • Some general principles and results for (φ(y′))′ = qf(t,y,y′), 0 < t < 1
    • O'Regan D. Some general principles and results for. (φ(y′))′=qf(t,y,y′), 0
    • (1993) SIAM J. Math. Anal. , vol.24 , pp. 648-668
    • O'Regan, D.1
  • 15
    • 0003145863 scopus 로고    scopus 로고
    • Existence theory for (φ(y′))′ = qf(t,y,y′), 0 < t < 1
    • O'Regan D. Existence theory for. (φ(y′))′=qf(t,y,y′), 0
    • (1997) Comm. Appl. Anal. , vol.1 , pp. 33-52
    • O'Regan, D.1
  • 16
    • 0001437014 scopus 로고
    • Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions
    • Wang M.X., Cabada A., Nieto J.J. Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Ann. Polon. Math. 58:1993;221-235.
    • (1993) Ann. Polon. Math. , vol.58 , pp. 221-235
    • Wang, M.X.1    Cabada, A.2    Nieto, J.J.3
  • 17
    • 0000643284 scopus 로고    scopus 로고
    • Existence of solutions to boundary value problems for a nonlinear second order equation with weak Carathéodory functions
    • Wang J., Gao W. Existence of solutions to boundary value problems for a nonlinear second order equation with weak Carathéodory functions. Differential Equations Dynamics Systems. 5(2):1997;175-185.
    • (1997) Differential Equations Dynamics Systems , vol.5 , Issue.2 , pp. 175-185
    • Wang, J.1    Gao, W.2
  • 18
    • 84972576250 scopus 로고
    • Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem
    • Wang J., Gao W., Lin Z. Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem. Tôhoku Math. J. 47:1995;327-344.
    • (1995) Tôhoku Math. J. , vol.47 , pp. 327-344
    • Wang, J.1    Gao, W.2    Lin, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.