-
2
-
-
0002633639
-
The quenching problem for nonlinear parabolic differential equations
-
W.M. Everitt, B.D. Sleeman (Eds). Ordinary and Partial Differential Equations, Dundee, Springer Berlin
-
Acker A., Walter W. The quenching problem for nonlinear parabolic differential equations. Everitt W.M., Sleeman B.D. Ordinary and Partial Differential Equations. Lecture Notes in Mathematics. Vol. 564:1976;1-12 Dundee, Springer, Berlin.
-
(1976)
Lecture Notes in Mathematics
, vol.564
, pp. 1-12
-
-
Acker, A.1
Walter, W.2
-
3
-
-
84942222028
-
The zero set of solutions of a parabolic equation
-
Angenent S. The zero set of solutions of a parabolic equation. J. Reine Angew. Math. 390:1988;79-96.
-
(1988)
J. Reine Angew. Math.
, vol.390
, pp. 79-96
-
-
Angenent, S.1
-
4
-
-
0010812516
-
A description of self-similar blow-up for dimensions n≥ 3
-
Bebernes J., Eberly D. A description of self-similar blow-up for dimensions. n≥ 3 Ann. Inst. Henri Poincaré 5:1988;1-21.
-
(1988)
Ann. Inst. Henri Poincaré
, vol.5
, pp. 1-21
-
-
Bebernes, J.1
Eberly, D.2
-
7
-
-
0010893911
-
The quenching problem on the N-dimensional ball
-
N.G. Lloyd, W.M. Ni, J. Serrin, L.A. Peletier (Eds.), Birkhäuser, Boston
-
Fila M., Hulshof J., Quittner P. The quenching problem on the. N -dimensional ball Lloyd N.G., Ni W.M., Serrin J., Peletier L.A. Nonlinear Diffusion Equations and their Equlibrium States 3. 1992;183-196 Birkhäuser, Boston.
-
(1992)
Nonlinear Diffusion Equations and their Equlibrium States 3
, pp. 183-196
-
-
Fila, M.1
Hulshof, J.2
Quittner, P.3
-
8
-
-
84966233485
-
Stabilization of solutions of weakly singular quenching problems
-
Fila M., Levine H.A., Vazquez J.L. Stabilization of solutions of weakly singular quenching problems. Proc. Amer. Math. Soc. 119:1993;555-559.
-
(1993)
Proc. Amer. Math. Soc.
, vol.119
, pp. 555-559
-
-
Fila, M.1
Levine, H.A.2
Vazquez, J.L.3
-
9
-
-
0010816767
-
Quenching profiles for one-dimensional heat equations
-
Filippas S., Guo J. Quenching profiles for one-dimensional heat equations. Quart. Appl. Math. 51:1993;713-729.
-
(1993)
Quart. Appl. Math.
, vol.51
, pp. 713-729
-
-
Filippas, S.1
Guo, J.2
-
12
-
-
84990616610
-
Asymptotically self-similar blow-up of semilinear heat equations
-
Giga Y., Kohn R.V. Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38:1985;297-319.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.V.2
-
13
-
-
0000332576
-
Characterizing blow-up using similarity variables
-
Giga Y., Kohn R. Characterizing blow-up using similarity variables. Indiana Univ. Math. J. 36:1987;1-40.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.2
-
14
-
-
0025494889
-
On the quenching behavior of the solution of a semilinear parabolic equation
-
Guo J. On the quenching behavior of the solution of a semilinear parabolic equation. J. Math. Anal. Appl. 151:1990;58-79.
-
(1990)
J. Math. Anal. Appl.
, vol.151
, pp. 58-79
-
-
Guo, J.1
-
15
-
-
0010876410
-
On the quenching rate estimate
-
Guo J. On the quenching rate estimate. Quart. Appl. Math. 49:1991;747-752.
-
(1991)
Quart. Appl. Math.
, vol.49
, pp. 747-752
-
-
Guo, J.1
-
17
-
-
0003177513
-
Remarks on quenching (review)
-
Kawohl B. Remarks on quenching (review) Documenta Math. 1:1996;199-208.
-
(1996)
Documenta Math.
, vol.1
, pp. 199-208
-
-
Kawohl, B.1
-
18
-
-
0000885478
-
Observations on blow-up and dead cores for nonlinear parabolic equations
-
Kawohl B., Peletier L. Observations on blow-up and dead cores for nonlinear parabolic equations. Math. Zeit. 202:1989;207-217.
-
(1989)
Math. Zeit.
, vol.202
, pp. 207-217
-
-
Kawohl, B.1
Peletier, L.2
-
19
-
-
0000576069
-
Quenching, nonquenching and beyond quenching for solutions of some parabolic equations
-
Levine H. Quenching, nonquenching and beyond quenching for solutions of some parabolic equations. Ann. di Mat. Pura Appl. 155:1990;243-260.
-
(1990)
Ann. di Mat. Pura Appl.
, vol.155
, pp. 243-260
-
-
Levine, H.1
-
20
-
-
0000534644
-
The quenching of solutions of some nonlinear parabolic equations
-
Levine H., Montgomery J. The quenching of solutions of some nonlinear parabolic equations. SIAM J. Math. Anal. 11:1980;842-847.
-
(1980)
SIAM J. Math. Anal.
, vol.11
, pp. 842-847
-
-
Levine, H.1
Montgomery, J.2
-
21
-
-
0025442951
-
The role of critical exponents in blowup theorems
-
Levine H. The role of critical exponents in blowup theorems. SIAM Rev. 32:1990;262-288.
-
(1990)
SIAM Rev.
, vol.32
, pp. 262-288
-
-
Levine, H.1
-
22
-
-
0003372222
-
Advances in quenching
-
N.G. Lloyd, W.M. Ni, J. Serrin, L.A. Peletier (Eds.), Birkhäuser, Boston
-
H. Levine, Advances in quenching, in: N.G. Lloyd, W.M. Ni, J. Serrin, L.A. Peletier (Eds.), Nonlinear Diffusion Equations and their Equlibrium States, Birkhäuser, Boston, 1192, pp. 319-346.
-
(1992)
Nonlinear Diffusion Equations and their Equlibrium States
, vol.3
, pp. 319-346
-
-
Levine, H.1
-
23
-
-
84951416437
-
Existence of solutions to a quenching problem
-
Phillips D. Existence of solutions to a quenching problem. Appl. Anal. 24:1987;253-264.
-
(1987)
Appl. Anal.
, vol.24
, pp. 253-264
-
-
Phillips, D.1
-
24
-
-
0030282583
-
Finite time blow-up for a nonlinear parabolic equation with a gradient term and applications
-
Souplet P. Finite time blow-up for a nonlinear parabolic equation with a gradient term and applications. Math. Meth. Appl. Sci. 19:1996;1317-1333.
-
(1996)
Math. Meth. Appl. Sci.
, vol.19
, pp. 1317-1333
-
-
Souplet, P.1
-
25
-
-
0000126964
-
Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term
-
Souplet P., Tayachi S., Weissler F. Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana Univ. Math. J. 45:1996;655-682.
-
(1996)
Indiana Univ. Math. J.
, vol.45
, pp. 655-682
-
-
Souplet, P.1
Tayachi, S.2
Weissler, F.3
-
27
-
-
38248998988
-
Local behavior near blow-up points for semilinear parabolic equations
-
L Velazquez J.J. Local behavior near blow-up points for semilinear parabolic equations. J. Differential Equations. 106:1993;384-415.
-
(1993)
J. Differential Equations
, vol.106
, pp. 384-415
-
-
L Velazquez, J.J.1
|