메뉴 건너뛰기




Volumn 36, Issue 9-10, 2002, Pages 1027-1038

Nondensely defined evolution equations with nonlocal conditions

Author keywords

Nondensely defined; Nonlocal conditions

Indexed keywords


EID: 0037195883     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0895-7177(02)00256-X     Document Type: Article
Times cited : (57)

References (13)
  • 1
    • 44949272606 scopus 로고
    • Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem
    • L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162, 494-505, (1991).
    • (1991) J. Math. Anal. Appl. , vol.162 , pp. 494-505
    • Byszewski, L.1
  • 2
    • 84959979133 scopus 로고
    • Theorems about the existence and uniqueness of continuous solutions of nonlocal problem for nonlinear hyperbolic equation
    • L. Byszewski, Theorems about the existence and uniqueness of continuous solutions of nonlocal problem for nonlinear hyperbolic equation, Applicable Anal. 40, 173-180, (1991).
    • (1991) Applicable Anal. , vol.40 , pp. 173-180
    • Byszewski, L.1
  • 3
    • 84948514180 scopus 로고
    • Theorems about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space
    • L. Byszewski and V. Lakshmikantham, Theorems about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Applicable Anal. 40, 11-19, (1990).
    • (1990) Applicable Anal. , vol.40 , pp. 11-19
    • Byszewski, L.1    Lakshmikantham, V.2
  • 4
    • 0000297319 scopus 로고
    • Exponential decay of solutions of semilinear parabolic equations with non-local initial conditions
    • K. Deng, Exponential decay of solutions of semilinear parabolic equations with non-local initial conditions. J. Math. Anal. Appl. 179, 630-637, (1993).
    • (1993) J. Math. Anal. Appl. , vol.179 , pp. 630-637
    • Deng, K.1
  • 5
    • 0002604090 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for quasilinear integrodifferential equation in Banach spaces
    • K. Balachandran and M. Chandrasekaran, Nonlocal Cauchy problem for quasilinear integrodifferential equation in Banach spaces, Dynamic Systems and Applications 8, (1999).
    • (1999) Dynamic Systems and Applications , pp. 8
    • Balachandran, K.1    Chandrasekaran, M.2
  • 6
    • 0011939163 scopus 로고    scopus 로고
    • A remark on the mild solution of non-local evolution equations
    • to appear
    • J. Liu, A remark on the mild solution of non-local evolution equations, Semigroup Forum (to appear).
    • Semigroup Forum
    • Liu, J.1
  • 7
    • 0031153492 scopus 로고    scopus 로고
    • Global existence for semilinear evolution equations with non-local conditions
    • S.K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with non-local conditions, J. Math. Anal. Appl. 210, 679-687, (1997).
    • (1997) J. Math. Anal. Appl. , vol.210 , pp. 679-687
    • Ntouyas, S.K.1    Tsamatos, P.Ch.2
  • 8
    • 0000500160 scopus 로고    scopus 로고
    • Semilinear integrodifferential equations with non-local Cauchy problem
    • Y. Lin and J. Liu, Semilinear integrodifferential equations with non-local Cauchy problem, Nonlinear Anal. 26, 1023-1033, (1996).
    • (1996) Nonlinear Anal. , vol.26 , pp. 1023-1033
    • Lin, Y.1    Liu, J.2
  • 10
    • 0034140628 scopus 로고    scopus 로고
    • Existence results for a class of abstract nonlocal Cauchy problems
    • S. Aizicovici and M. McKibben, Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear Anal. 39, 649-668, (2000).
    • (2000) Nonlinear Anal. , vol.39 , pp. 649-668
    • Aizicovici, S.1    McKibben, M.2
  • 11
    • 51649147034 scopus 로고
    • Vector valued Laplace transforms and Cauchy problems
    • W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math 59, 327-352, (1987).
    • (1987) Israel J. Math , vol.59 , pp. 327-352
    • Arendt, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.