메뉴 건너뛰기




Volumn 67, Issue 24, 2002, Pages 8662-8665

Stannous chloride-mediated reductive cyclization - Rearrangement of nitroarenyl ketones

Author keywords

[No Author keywords available]

Indexed keywords

DERIVATIVES; ETHANOL; REDUCTION;

EID: 0037195672     PISSN: 00223263     EISSN: None     Source Type: Journal    
DOI: 10.1021/jo0259921     Document Type: Article
Times cited : (38)

References (51)
  • 2
    • 2242431939 scopus 로고
    • Tin (II) chloride
    • Paquette, L. A., Ed.; Wiley: New York
    • Faul, M. M. Tin (II) Chloride. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 7, p 4893.
    • (1995) Encyclopedia of Reagents for Organic Synthesis , vol.7 , pp. 4893
    • Faul, M.M.1
  • 3
    • 0004180734 scopus 로고
    • Wiley, New York; Collect
    • Tyson, F. T. Organic Syntheses; Wiley: New York, 1955; Collect. Vol. III, p 479. See also: Preston, P. N.; Tennant, G. Chem. Rev. 1972, 72, 627-677.
    • (1955) Organic Syntheses , vol.3 , pp. 479
    • Tyson, F.T.1
  • 4
    • 0000814857 scopus 로고
    • Tyson, F. T. Organic Syntheses; Wiley: New York, 1955; Collect. Vol. III, p 479. See also: Preston, P. N.; Tennant, G. Chem. Rev. 1972, 72, 627-677.
    • (1972) Chem. Rev. , vol.72 , pp. 627-677
    • Preston, P.N.1    Tennant, G.2
  • 12
    • 85069099591 scopus 로고
    • Jpn. Kokai Tokkyo Koho JP 05,239,036 [93,239,036]
    • (a) Watabe, Y.; Kondo, T.; Akazome, M. Jpn. Kokai Tokkyo Koho JP 05,239,036 [93,239,036]; Chem. Abstr. 1994, 120, 217719x.
    • (1994) Chem. Abstr. , vol.120
    • Watabe, Y.1    Kondo, T.2    Akazome, M.3
  • 14
    • 85069107958 scopus 로고
    • (b) Konstantinova, A. V.; Mikhalina, T. V.; Fokin, E. P. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1989, 57; Chem. Abstr. 1990, 112, 98352v.
    • (1990) Chem. Abstr. , vol.112
  • 16
    • 85069088407 scopus 로고    scopus 로고
    • PCT Int. Appl. WO 96 02,502
    • Varney, M. D.; Palmer, C. L.; Deal, J. G. PCT Int. Appl. WO 96 02,502; Chem. Abstr. 1996, 125, 10624v
    • Varney, M.D.1    Palmer, C.L.2    Deal, J.G.3
  • 17
    • 85069094503 scopus 로고    scopus 로고
    • Varney, M. D.; Palmer, C. L.; Deal, J. G. PCT Int. Appl. WO 96 02,502; Chem. Abstr. 1996, 125, 10624v
    • (1996) Chem. Abstr. , vol.125
  • 19
    • 0019215678 scopus 로고
    • Levai, A. Pharmazie 1980, 35, 680-681.
    • (1980) Pharmazie , vol.35 , pp. 680-681
    • Levai, A.1
  • 20
    • 85069105271 scopus 로고    scopus 로고
    • note
    • 13C chemical shifts are in accord with the assignment of seven- and six-membered-ring skeletons to 1 and 2, respectively.
  • 21
    • 37049148143 scopus 로고
    • There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
    • (1927) J. Chem. Soc. , pp. 2738-2753
    • Mills, W.H.1    Whitworth, J.B.2
  • 22
    • 33845377548 scopus 로고
    • There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
    • (1897) Chem. Ber. , vol.30 , pp. 2387
    • Unger, R.1    Graf, G.2
  • 23
    • 0028916443 scopus 로고
    • There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
    • (1995) Farmaco , vol.50 , pp. 107-112
    • Trapani, G.1    Latrofa, A.2    Franco, M.3    Liso, G.4
  • 24
    • 0001271054 scopus 로고
    • There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
    • (1992) J. Org. Chem. , vol.57 , pp. 5530-5532
    • Martin, V.1    Molines, H.2    Wakselman, C.3
  • 25
    • 33845377548 scopus 로고
    • There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
    • (1985) J. Am. Chem. Soc. , vol.107 , pp. 6740-6742
    • Klumpp, G.W.1    Mierop, A.J.2    Vrielink, J.J.3    Brugman, A.4    Schakel, M.5
  • 34
    • 4243332824 scopus 로고
    • Gaino, M.; Iijima, I.; Nishimoto, S.; Ikeda, K.; Fujii, T. Jpn. Kakai 1983, 58-99471; Chem. Abstr. 1983, 99, 175819v.
    • (1983) Chem. Abstr. , vol.99
  • 36
    • 85069104516 scopus 로고    scopus 로고
    • note
    • Confirmation of structure 3 by X-ray diffraction will be reported separately. The only impurity isolated (in very small quantity) is i, perhaps formed from an acid- or tin-catalyzed attack of ethanol on the intermediate hydroxylamine (with loss of water) followed by amidine formation from the derived aniline derivative. For physical and spectral properties of i see the Experimental Section.
  • 38
    • 0000092937 scopus 로고    scopus 로고
    • (b) Via imidoyl chlorides: Kraft. A. J. Chem. Soc., Perkin Trans. 1 1999, 705-714. Benincori, T.; Sannicolo, F. J. Heterocycl. Chem. 1988, 25, 1029-1033.
    • (1999) J. Chem. Soc., Perkin Trans. 1 , pp. 705-714
    • Kraft, A.1
  • 39
    • 2242473201 scopus 로고
    • (b) Via imidoyl chlorides: Kraft. A. J. Chem. Soc., Perkin Trans. 1 1999, 705-714. Benincori, T.; Sannicolo, F. J. Heterocycl. Chem. 1988, 25, 1029-1033.
    • (1988) J. Heterocycl. Chem. , vol.25 , pp. 1029-1033
    • Benincori, T.1    Sannicolo, F.2
  • 41
    • 0019426388 scopus 로고
    • Amidine formation in a one-pot reductive cyclization of nitroarenes containing a cyano group is known: see refs 4c and 8. Amidines from addition of amines to nitriles are well-known: Ogonor, J. I. Tetrahedron 1981, 37, 2909-2910.
    • (1981) Tetrahedron , vol.37 , pp. 2909-2910
    • Ogonor, J.I.1
  • 44
    • 0002537761 scopus 로고
    • Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
    • (1972) Tetrahedron Lett. , pp. 1151-1153
    • Just, G.1    Cunningham, M.2
  • 45
    • 33845720219 scopus 로고
    • Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
    • (1964) Chem. Rev. , vol.64 , pp. 473-495
    • Hamar, J.1    Macaluso, A.2
  • 46
    • 84910968832 scopus 로고
    • Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
    • (1960) Chem. Pharm. Bull. Jpn. , vol.8 , pp. 967-975
    • Umezawa, B.1
  • 47
    • 37049052706 scopus 로고
    • Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
    • (1959) J. Chem. Soc. , pp. 2102-2104
    • Bonnett, R.1    Clark, V.M.2    Todd, A.3
  • 48
    • 0000180153 scopus 로고
    • Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
    • (1958) Chem. Ber. , vol.91 , pp. 1057-1068
    • Krimm, H.1
  • 49
    • 84982060356 scopus 로고
    • Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
    • (1957) Ann , vol.604 , pp. 203-207
    • Kroehnke, F.1
  • 50
    • 0001354153 scopus 로고
    • The semipinacol and other rearrangements
    • Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York
    • Coveney, D. J. The semipinacol and other rearrangements. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 777-801.
    • (1991) Comprehensive Organic Synthesis , vol.3 , pp. 777-801
    • Coveney, D.J.1
  • 51
    • 2242420252 scopus 로고
    • 2 in ethanol-stabilized dicholoromethane to form N,O-acetals (Pindur, U.; Schiffl, E. Monatsh. Chem. 1986, 117, 1461-1463).
    • (1986) Monatsh. Chem. , vol.117 , pp. 1461-1463
    • Pindur, U.1    Schiffl, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.