-
2
-
-
2242431939
-
Tin (II) chloride
-
Paquette, L. A., Ed.; Wiley: New York
-
Faul, M. M. Tin (II) Chloride. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 7, p 4893.
-
(1995)
Encyclopedia of Reagents for Organic Synthesis
, vol.7
, pp. 4893
-
-
Faul, M.M.1
-
3
-
-
0004180734
-
-
Wiley, New York; Collect
-
Tyson, F. T. Organic Syntheses; Wiley: New York, 1955; Collect. Vol. III, p 479. See also: Preston, P. N.; Tennant, G. Chem. Rev. 1972, 72, 627-677.
-
(1955)
Organic Syntheses
, vol.3
, pp. 479
-
-
Tyson, F.T.1
-
4
-
-
0000814857
-
-
Tyson, F. T. Organic Syntheses; Wiley: New York, 1955; Collect. Vol. III, p 479. See also: Preston, P. N.; Tennant, G. Chem. Rev. 1972, 72, 627-677.
-
(1972)
Chem. Rev.
, vol.72
, pp. 627-677
-
-
Preston, P.N.1
Tennant, G.2
-
5
-
-
0030945864
-
-
(a) Baik, W.; Kim, D. I.; Lee, H. J.; Chung, W.; Kim, B. H.; Lee, S. W. Tetrahedron Lett. 1997, 38, 4579-4580.
-
(1997)
Tetrahedron Lett.
, vol.38
, pp. 4579-4580
-
-
Baik, W.1
Kim, D.I.2
Lee, H.J.3
Chung, W.4
Kim, B.H.5
Lee, S.W.6
-
6
-
-
0000904825
-
-
(b) Battistoni, P.; Bruni, P.; Fava, G. Tetrahedron 1979, 35, 1771-1775.
-
(1979)
Tetrahedron
, vol.35
, pp. 1771-1775
-
-
Battistoni, P.1
Bruni, P.2
Fava, G.3
-
10
-
-
2242428264
-
-
(b) Tennant, G.; Wallis, C. J.; Weaver, G. W. J. Chem. Soc., Perkin Trans. 1 1999, 629-640.
-
(1999)
J. Chem. Soc., Perkin Trans. 1
, pp. 629-640
-
-
Tennant, G.1
Wallis, C.J.2
Weaver, G.W.3
-
11
-
-
84989925764
-
-
(c) Coutts, R. T.; Peel, H. W.; Smith, E. M. Can. J. Chem. 1965, 43, 3221-3231.
-
(1965)
Can. J. Chem.
, vol.43
, pp. 3221-3231
-
-
Coutts, R.T.1
Peel, H.W.2
Smith, E.M.3
-
12
-
-
85069099591
-
-
Jpn. Kokai Tokkyo Koho JP 05,239,036 [93,239,036]
-
(a) Watabe, Y.; Kondo, T.; Akazome, M. Jpn. Kokai Tokkyo Koho JP 05,239,036 [93,239,036]; Chem. Abstr. 1994, 120, 217719x.
-
(1994)
Chem. Abstr.
, vol.120
-
-
Watabe, Y.1
Kondo, T.2
Akazome, M.3
-
13
-
-
2242440155
-
-
(b) Konstantinova, A. V.; Mikhalina, T. V.; Fokin, E. P. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1989, 57; Chem. Abstr. 1990, 112, 98352v.
-
(1989)
Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk
, pp. 57
-
-
Konstantinova, A.V.1
Mikhalina, T.V.2
Fokin, E.P.3
-
14
-
-
85069107958
-
-
(b) Konstantinova, A. V.; Mikhalina, T. V.; Fokin, E. P. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1989, 57; Chem. Abstr. 1990, 112, 98352v.
-
(1990)
Chem. Abstr.
, vol.112
-
-
-
16
-
-
85069088407
-
-
PCT Int. Appl. WO 96 02,502
-
Varney, M. D.; Palmer, C. L.; Deal, J. G. PCT Int. Appl. WO 96 02,502; Chem. Abstr. 1996, 125, 10624v
-
-
-
Varney, M.D.1
Palmer, C.L.2
Deal, J.G.3
-
17
-
-
85069094503
-
-
Varney, M. D.; Palmer, C. L.; Deal, J. G. PCT Int. Appl. WO 96 02,502; Chem. Abstr. 1996, 125, 10624v
-
(1996)
Chem. Abstr.
, vol.125
-
-
-
19
-
-
0019215678
-
-
Levai, A. Pharmazie 1980, 35, 680-681.
-
(1980)
Pharmazie
, vol.35
, pp. 680-681
-
-
Levai, A.1
-
20
-
-
85069105271
-
-
note
-
13C chemical shifts are in accord with the assignment of seven- and six-membered-ring skeletons to 1 and 2, respectively.
-
-
-
-
21
-
-
37049148143
-
-
There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
-
(1927)
J. Chem. Soc.
, pp. 2738-2753
-
-
Mills, W.H.1
Whitworth, J.B.2
-
22
-
-
33845377548
-
-
There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
-
(1897)
Chem. Ber.
, vol.30
, pp. 2387
-
-
Unger, R.1
Graf, G.2
-
23
-
-
0028916443
-
-
There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
-
(1995)
Farmaco
, vol.50
, pp. 107-112
-
-
Trapani, G.1
Latrofa, A.2
Franco, M.3
Liso, G.4
-
24
-
-
0001271054
-
-
There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
-
(1992)
J. Org. Chem.
, vol.57
, pp. 5530-5532
-
-
Martin, V.1
Molines, H.2
Wakselman, C.3
-
25
-
-
33845377548
-
-
There is only one report of 1a in the literature (ref 10) and no reports of 2a. The benzothiazepinone skeleton is generally prepared by reacting o-aminobenzenethiol with an α,β-unsaturated carboxylic acid (e.g., cinnamic acid) at high temperature (160-180 °C) for several hours while the benzothiazinone skeleton is generally prepared from an α-bromoacid (e.g., 2-bromo-3-phenylpropanoic acid). As a product of initial direct Michael addition, 1 is expected to be the kinetic product. However, after 1 has formed and under conditions allowing equilibration through retro-Michael addition, even though anti-Michael addition product 2 is disfavored kinetically it could begin to appear in the reaction mixture since it may be favored thermodynamically. This analysis is consistent with the 1a:2a ratio observed in our reactions. Also, the rate of anti-Michael addition is enhanced with Michael acceptors containing a β-group capable of stabilizing a negative charge. All of this may mean that some compounds assigned the benzothiazepinone skeleton in the literature may in fact be the corresponding benzothiazinone analogue (especially when the phenyl ring is replaced by 2-nitrophenyl, a pyridine ring or other π-deficient heteroaromatic moieties). This is an important point because many of the reports of applications of these reactions discuss the products as potential therapeutic targets. (a) Mills, W. H.; Whitworth, J. B. J. Chem. Soc. 1927, 2738-2753. (b) Unger, R.; Graf, G. Chem. Ber. 1897, 30, 2387. (c) Trapani, G.; Latrofa, A.; Franco, M.; Liso, G. Farmaco 1995, 50, 107-112. (d) Martin, V.; Molines, H.; Wakselman, C. J. Org. Chem. 1992, 57, 5530-5532. (e) Klumpp, G. W.; Mierop, A. J.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740-6742.
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 6740-6742
-
-
Klumpp, G.W.1
Mierop, A.J.2
Vrielink, J.J.3
Brugman, A.4
Schakel, M.5
-
27
-
-
0023184905
-
-
(b) Kori, M.; Itoh, K.; Sugihara, H. Chem. Pharm. Bull. Jpn. 1987, 35, 2319-2324.
-
(1987)
Chem. Pharm. Bull. Jpn.
, vol.35
, pp. 2319-2324
-
-
Kori, M.1
Itoh, K.2
Sugihara, H.3
-
28
-
-
0022400567
-
-
(c) Slade, J.; Stanton, J. L.; Ben-David, D.; Mazzenga, G. C. J. Med. Chem. 1985, 28, 1517-1521.
-
(1985)
J. Med. Chem.
, vol.28
, pp. 1517-1521
-
-
Slade, J.1
Stanton, J.L.2
Ben-David, D.3
Mazzenga, G.C.4
-
31
-
-
0000804126
-
-
(f) Krapcho, J.; Spitzmiller, E. R.; Turk, C. F. J. Med. Chem. 1963, 6, 544-546.
-
(1963)
J. Med. Chem.
, vol.6
, pp. 544-546
-
-
Krapcho, J.1
Spitzmiller, E.R.2
Turk, C.F.3
-
33
-
-
85069099516
-
-
Jpn. Kakai 1983, 58-99471
-
Gaino, M.; Iijima, I.; Nishimoto, S.; Ikeda, K.; Fujii, T. Jpn. Kakai 1983, 58-99471; Chem. Abstr. 1983, 99, 175819v.
-
-
-
Gaino, M.1
Iijima, I.2
Nishimoto, S.3
Ikeda, K.4
Fujii, T.5
-
34
-
-
4243332824
-
-
Gaino, M.; Iijima, I.; Nishimoto, S.; Ikeda, K.; Fujii, T. Jpn. Kakai 1983, 58-99471; Chem. Abstr. 1983, 99, 175819v.
-
(1983)
Chem. Abstr.
, vol.99
-
-
-
36
-
-
85069104516
-
-
note
-
Confirmation of structure 3 by X-ray diffraction will be reported separately. The only impurity isolated (in very small quantity) is i, perhaps formed from an acid- or tin-catalyzed attack of ethanol on the intermediate hydroxylamine (with loss of water) followed by amidine formation from the derived aniline derivative. For physical and spectral properties of i see the Experimental Section.
-
-
-
-
38
-
-
0000092937
-
-
(b) Via imidoyl chlorides: Kraft. A. J. Chem. Soc., Perkin Trans. 1 1999, 705-714. Benincori, T.; Sannicolo, F. J. Heterocycl. Chem. 1988, 25, 1029-1033.
-
(1999)
J. Chem. Soc., Perkin Trans. 1
, pp. 705-714
-
-
Kraft, A.1
-
39
-
-
2242473201
-
-
(b) Via imidoyl chlorides: Kraft. A. J. Chem. Soc., Perkin Trans. 1 1999, 705-714. Benincori, T.; Sannicolo, F. J. Heterocycl. Chem. 1988, 25, 1029-1033.
-
(1988)
J. Heterocycl. Chem.
, vol.25
, pp. 1029-1033
-
-
Benincori, T.1
Sannicolo, F.2
-
40
-
-
0002007033
-
-
Patai, S., Ed.; Wiley: New York
-
(c) Via imidoesters: Roger, R.; Neilson, D. G. In The Chemistry of Imidates; Patai, S., Ed.; Wiley: New York, 1960; p 179.
-
(1960)
The Chemistry of Imidates
, pp. 179
-
-
Roger, R.1
Neilson, D.G.2
-
41
-
-
0019426388
-
-
Amidine formation in a one-pot reductive cyclization of nitroarenes containing a cyano group is known: see refs 4c and 8. Amidines from addition of amines to nitriles are well-known: Ogonor, J. I. Tetrahedron 1981, 37, 2909-2910.
-
(1981)
Tetrahedron
, vol.37
, pp. 2909-2910
-
-
Ogonor, J.I.1
-
42
-
-
85004234654
-
-
Kugita, H.; Inoue, H.; Ikezaki, M.; Takeo, S. Chem. Pharm. Bull. 1970, 18, 2028-2037.
-
(1970)
Chem. Pharm. Bull.
, vol.18
, pp. 2028-2037
-
-
Kugita, H.1
Inoue, H.2
Ikezaki, M.3
Takeo, S.4
-
43
-
-
0023881139
-
-
Ponticello, S. P.; Freedman, M. B.; Habecker, C. N.; Holloway, M. K.; Amato, J. S.; Conn, R. S.; Baldwin, J. J. J. Org. Chem. 1988, 53, 9-13.
-
(1988)
J. Org. Chem.
, vol.53
, pp. 9-13
-
-
Ponticello, S.P.1
Freedman, M.B.2
Habecker, C.N.3
Holloway, M.K.4
Amato, J.S.5
Conn, R.S.6
Baldwin, J.J.7
-
44
-
-
0002537761
-
-
Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
-
(1972)
Tetrahedron Lett.
, pp. 1151-1153
-
-
Just, G.1
Cunningham, M.2
-
45
-
-
33845720219
-
-
Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
-
(1964)
Chem. Rev.
, vol.64
, pp. 473-495
-
-
Hamar, J.1
Macaluso, A.2
-
46
-
-
84910968832
-
-
Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
-
(1960)
Chem. Pharm. Bull. Jpn.
, vol.8
, pp. 967-975
-
-
Umezawa, B.1
-
47
-
-
37049052706
-
-
Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
-
(1959)
J. Chem. Soc.
, pp. 2102-2104
-
-
Bonnett, R.1
Clark, V.M.2
Todd, A.3
-
48
-
-
0000180153
-
-
Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
-
(1958)
Chem. Ber.
, vol.91
, pp. 1057-1068
-
-
Krimm, H.1
-
49
-
-
84982060356
-
-
Less strained analogues of 12 (Scheme 4) are intermediates in the standard route to nitrones. Nitrones and oxaziranes equilibrate photochemically or thermally (ref 4). In this case, ii/iii could form from attack of the hemiaminal hydroxyl at nitrogen with Sn-assisted displacement of the N-hydroxyl group. Although rearrangement of oxaziranes to amides is a well-know process, this pathway to 13 seems less likely due to steric strain in the intermediates: (a) Just, G.; Cunningham, M. Tetrahedron Lett. 1972, 1151-1153. (b) Hamar, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495. (c) Umezawa, B. Chem. Pharm. Bull. Jpn. 1960, 8, 967-975. (d) Bonnett, R.; Clark, V. M.; Todd, A. J. Chem. Soc. 1959, 2102-2104. (e) Krimm, H. Chem. Ber. 1958, 91, 1057-1068. (f) Kroehnke, F. Ann. 1957, 604, 203-207.
-
(1957)
Ann
, vol.604
, pp. 203-207
-
-
Kroehnke, F.1
-
50
-
-
0001354153
-
The semipinacol and other rearrangements
-
Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York
-
Coveney, D. J. The semipinacol and other rearrangements. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 777-801.
-
(1991)
Comprehensive Organic Synthesis
, vol.3
, pp. 777-801
-
-
Coveney, D.J.1
-
51
-
-
2242420252
-
-
2 in ethanol-stabilized dicholoromethane to form N,O-acetals (Pindur, U.; Schiffl, E. Monatsh. Chem. 1986, 117, 1461-1463).
-
(1986)
Monatsh. Chem.
, vol.117
, pp. 1461-1463
-
-
Pindur, U.1
Schiffl, E.2
|