-
3
-
-
33845279318
-
-
(a) Caron M., Sharpless K.B. J. Org. Chem. 50:1985;1557-1560 (b) Behrens C.H., Sharpless K.B. J. Org. Chem. 50:1985;5696-5704 (c) Caron M., Carlier P.R., Sharpless K.B. J. Org. Chem. 53:1988;5185-5187.
-
(1988)
J. Org. Chem.
, vol.53
, pp. 5185-5187
-
-
Caron, M.1
Carlier, P.R.2
Sharpless, K.B.3
-
15
-
-
84981883922
-
-
(a) Chini M., Crotti P., Flippin L.A., Macchia F. J. Org. Chem. 55:1990;4265-4272 (b) Chini M., Crotti P., Flippin L.A., Macchia F., Pineschi M. J. Org. Chem. 57:1992;1405-1412 (c) Chini M., Crotti P., Flippin L.A., Macchia F., Gardelli C. J. Org. Chem. 57:1992;1713-1718 (d) Calvani F., Crotti P., Gardelli C., Pineschi M. Tetrahedron. 50:1994;12999-13021 (e) Crotti P., Di Bussolo V., Favero L., Macchia F., Pineschi M. Eur. J. Org. Chem. 1998;1675-1686. and references therein. For other results on the influence of nearby heterofunctionality, particularly in the α and β position, see: (f) Azzena F., Crotti P., Favero L., Pineschi M. Tetrahedron. 51:1995;13409-13422. and references therein (g) Righi G., Pescatore G., Bonadies F., Bonini C. Tetrahedron. 57:2001;5649-5656 (h) Honda T., Mizutani H. Heterocycles. 48:1998;1753-1757 (i) Wang S., Howe G.P., Mahal R.S., Procter G. Tetrahedron Lett. 33:1992;3351-3354 (j) Ooi T., Kagoshima N., Ichikawa H., Maruoka K. J. Am. Chem. Soc. 121:1999;3328-3333 (k) Flippin L.A., Brown P.A., Jalali-Araghi. J. Org. Chem. 54:1989;3588-3596 (l) Pfaltz A., Mattemberger A. Angew. Chem. Suppl. 1982;161-168.
-
(1982)
Angew. Chem. Suppl.
, pp. 161-168
-
-
Pfaltz, A.1
Mattemberger, A.2
-
16
-
-
0005203368
-
-
4, in the methanolysis)
-
4, in the methanolysis).
-
-
-
-
17
-
-
0034665360
-
-
Crotti P., Di Bussolo V., Favero L., Pineschi M., Marianucci F., Renzi G., Amici G., Roselli G. Tetrahedron. 56:2000;7513-7524.
-
(2000)
Tetrahedron
, vol.56
, pp. 7513-7524
-
-
Crotti, P.1
Di Bussolo, V.2
Favero, L.3
Pineschi, M.4
Marianucci, F.5
Renzi, G.6
Amici, G.7
Roselli, G.8
-
18
-
-
0005127777
-
-
2, respectively)
-
+, MeOH) ( Tables 1-4 ), making a direct comparison possible between all these conditions and in particular a direct comparison of the behavior of the proton under different operating conditions
-
-
-
-
20
-
-
0031036354
-
-
(aziridines 3 and 4)
-
. Aziridines 1-4 were previously examined by the authors in opening reactions in the cd-phase with different nucleophiles (including MeOH only in the case of 1 and 2), both under standard and chelating conditions: (a) Crotti P., Favero L., Gardelli C., Macchia F., Pineschi M. J. Org. Chem. 60:1995;2514-2525. (aziridines 1 and 2) (b) Crotti P., Di Bussolo V., Favero L., Pineschi M. Tetrahedron. 53:1997;1417-1438. (aziridines 3 and 4).
-
(1997)
Tetrahedron
, vol.53
, pp. 1417-1438
-
-
Crotti, P.1
Di Bussolo, V.2
Favero, L.3
Pineschi, M.4
-
21
-
-
0005179098
-
-
2b and on the reasonable assumption that epoxides 13 and 14 should have a similar regiochemical behavior also in a fairly similar reaction like acid azidolysis
-
2b and on the reasonable assumption that epoxides 13 and 14 should have a similar regiochemical behavior also in a fairly similar reaction like acid azidolysis.
-
-
-
-
22
-
-
0005165562
-
-
The C-1 and C-2 product nomenclature refers to the attacking site of the nucleophile, i.e. at the C(1) or C(2) aziridine carbon of aziridines 1-8, in accordance with the numbering scheme shown in Schemes 5-8
-
The C-1 and C-2 product nomenclature refers to the attacking site of the nucleophile, i.e. at the C(1) or C(2) aziridine carbon of aziridines 1-8, in accordance with the numbering scheme shown in Schemes 5-8.
-
-
-
-
23
-
-
0005179099
-
-
1H NMR examination of the corresponding crude opening reaction product (see Experimental)
-
1H NMR examination of the corresponding crude opening reaction product (see Experimental ).
-
-
-
-
29
-
-
37049099244
-
-
(a) Ausloos P., Lias S.G., Gorden R. Jr. J. Chem. Phys. 39:1963;3341-3348 (b) Ausloos P. Franklin J.L., Ion-Molecule Reactions. 1970;Plenum, New York, (c) Ausloos P., Lias S.G. J. Chem. Phys. 36:1962;3163-3170 (d) Freeman G.R. Radiat. Res. Rev. 1:1968;1-74 (e) Sandoval L.B., Ausloos P. J. Chem. Phys. 38:1963;2454-2460 (f) Speranza M., Pepe N., Cipollini R. J. Chem. Soc., Perkin Trans. 2. 1979;1179-1186.
-
(1979)
J. Chem. Soc., Perkin Trans. 2
, pp. 1179-1186
-
-
Speranza, M.1
Pepe, N.2
Cipollini, R.3
-
30
-
-
0030997126
-
-
(1997)
Tetrahedron
, vol.53
, pp. 5515-5536
-
-
Crotti, P.1
Di Bussolo, V.2
Favero, L.3
Pineschi, M.4
Sergiampietri, D.5
Renzi, G.6
Ricciutelli, M.7
Roselli, G.8
-
32
-
-
0025863296
-
-
(a) Crotti P., Di Bussolo V., Favero L., Pineschi M., Sergiampietri D., Renzi G., Ricciutelli M., Roselli G. Tetrahedron. 53:1997;5515-5536 (b) Chini M., Crotti P., Minutolo F., Dezi E., Lombardozzi A., Pizzabiocca A., Renzi G. Tetrahedron. 49:1993;5845-5858 (c) Cecchi P., Chini M., Crotti P., Pizzabiocca A., Renzi G., Speranza M. Tetrahedron. 47:1991;4683-4692.
-
(1991)
Tetrahedron
, vol.47
, pp. 4683-4692
-
-
Cecchi, P.1
Chini, M.2
Crotti, P.3
Pizzabiocca, A.4
Renzi, G.5
Speranza, M.6
-
33
-
-
0005198530
-
-
3 to the gaseous mixture causes a strong decrease in the product yield, thus demonstrating the ionic origin of the neutral products
-
3 to the gaseous mixture causes a strong decrease in the product yield, thus demonstrating the ionic origin of the neutral products.
-
-
-
-
34
-
-
0005198531
-
-
4 no traces of non-addition products were found in the corresponding reactions of aziridines 1-8
-
4 no traces of non-addition products were found in the corresponding reactions of aziridines 1-8.
-
-
-
-
35
-
-
0005129724
-
-
4 can now reasonably be extended to the corresponding reactions of aziridines. In fact, in the cd-phase, the intermediate protonated aziridine 52 (Scheme 4), as the corresponding protonated epoxide, rapidly undergoes nucleophilic addition by the surrounding nucleophilic solvent (MeOH) to afford the corresponding opening products, a situation which actually corresponds to low ion lifetime conditions in the gas-phase
-
4 can now reasonably be extended to the corresponding reactions of aziridines. In fact, in the cd-phase, the intermediate protonated aziridine 52 ( Scheme 4 ), as the corresponding protonated epoxide, rapidly undergoes nucleophilic addition by the surrounding nucleophilic solvent (MeOH) to afford the corresponding opening products, a situation which actually corresponds to low ion lifetime conditions in the gas-phase.
-
-
-
-
38
-
-
0005130384
-
-
6a
-
6a.
-
-
-
-
39
-
-
0005127080
-
-
15 can be nucleophilically attacked only at the C(1) aziridine carbon giving the result observed (Scheme 5)
-
15 can be nucleophilically attacked only at the C(1) aziridine carbon giving the result observed ( Scheme 5 ).
-
-
-
-
40
-
-
0005222051
-
-
2d
-
2d.
-
-
-
-
43
-
-
0005127081
-
-
b) and, as a consequence, with a C-1 product structure for MU 25 which should exist in the largely more stable triequatorial conformation 25a
-
b) and, as a consequence, with a C-1 product structure for MU 25 which should exist in the largely more stable triequatorial conformation 25a.
-
-
-
-
44
-
-
0005131469
-
-
2OBn group equatorial
-
2OBn group equatorial.
-
-
-
|