-
1
-
-
0001470741
-
The Newton-Kantorovich method under mild differentiability conditions and the Ptâk error estimates
-
I.K. Argyros, The Newton-Kantorovich method under mild differentiability conditions and the Ptâk error estimates, Mh. Math. 109 (1990) 175-193.
-
(1990)
Mh. Math.
, vol.109
, pp. 175-193
-
-
Argyros, I.K.1
-
2
-
-
0001345494
-
On the secant method
-
I.K. Argyros, On the secant method, Publ. Math. Debrecen 43 (1993) 223-238.
-
(1993)
Publ. Math. Debrecen
, vol.43
, pp. 223-238
-
-
Argyros, I.K.1
-
3
-
-
0039205183
-
A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions
-
I.K. Argyros, A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions, Appl. Math. Comput. 61 (1994) 25-37.
-
(1994)
Appl. Math. Comput.
, vol.61
, pp. 25-37
-
-
Argyros, I.K.1
-
4
-
-
0343725794
-
Multipoint super-Halley type approximation algorithms in Banach spaces
-
J.A. Ezquerro, M.A. Hernández, Multipoint super-Halley type approximation algorithms in Banach spaces, Numer. Funct. Anal. Optim. 21 (2000) 845-858.
-
(2000)
Numer. Funct. Anal. Optim.
, vol.21
, pp. 845-858
-
-
Ezquerro, J.A.1
Hernández, M.A.2
-
5
-
-
0012605421
-
A new type of recurrence relations for the secant method
-
M.A. Hernández, M.J. Rubio, A new type of recurrence relations for the secant method, Internat. J. Comput. Math. (1999) 477-490.
-
(1999)
Internat. J. Comput. Math.
, pp. 477-490
-
-
Hernández, M.A.1
Rubio, M.J.2
-
6
-
-
0034664280
-
Relaxing convergence conditions for Newton's method
-
M.A. Hernández, Relaxing convergence conditions for Newton's method, J. Math. Anal. Appl. 249 (2000) 463-475.
-
(2000)
J. Math. Anal. Appl.
, vol.249
, pp. 463-475
-
-
Hernández, M.A.1
-
7
-
-
0003875156
-
Nondiscrete Induction and Iterative Processes
-
Pitman, New York
-
F.A. Potra, V Ptâk, Nondiscrete Induction and Iterative Processes, Pitman, New York, 1984.
-
(1984)
-
-
Potra, F.A.1
Ptâk, V.2
-
8
-
-
0023415814
-
A note on a posteriori error bound of Zabrejko and Nguen for Zicenko's iteration
-
T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nguen for Zicenko's iteration, Numer. Funct. Anal. Optim. 9 (1987) 987-994.
-
(1987)
Numer. Funct. Anal. Optim.
, vol.9
, pp. 987-994
-
-
Yamamoto, T.1
|