-
3
-
-
84922264990
-
-
Phys. Rev. D 59, 086004 (1999);
-
(1999)
Phys. Rev. D
, vol.59
, pp. 086004
-
-
-
4
-
-
0347416177
-
-
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G.R. Dvali, Phys. Lett. B 436, 257 (1998).
-
(1998)
Phys. Lett. B
, vol.436
, pp. 257
-
-
Antoniadis, I.1
Arkani-Hamed, N.2
Dimopoulos, S.3
Dvali, G.R.4
-
7
-
-
0042938029
-
-
Particle Data Group
-
Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000).
-
(2000)
Eur. Phys. J. C
, vol.15
, pp. 1
-
-
Groom, D.E.1
-
10
-
-
33744860997
-
-
G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadan, and A.M. Uranga, J. High Energy Phys. 02, 047 (2001);
-
(2001)
J. High Energy Phys.
, vol.2
, pp. 047
-
-
Aldazabal, G.1
Franco, S.2
Ibáñez, L.E.3
Rabadan, R.4
Uranga, A.M.5
-
17
-
-
0002269325
-
-
V. Barger, T. Han, C. Kao, and R.J. Zhang, Phys. Lett. B 461, 34 (1999);
-
(1999)
Phys. Lett. B
, vol.461
, pp. 34
-
-
Barger, V.1
Han, T.2
Kao, C.3
Zhang, R.J.4
-
33
-
-
0042140711
-
-
R. Blumenhagen, B. Körs, D. Lust, and T. Ott, Nucl. Phys. B616, 3 (2001);
-
(2001)
Nucl. Phys.
, vol.B616
, pp. 3
-
-
Blumenhagen, R.1
Körs, B.2
Lust, D.3
Ott, T.4
-
35
-
-
0043255877
-
-
R. Blumenhagen, L. Görlich, B. Körs, and D. Lust, J. High Energy Phys. ibid. 10, 006 (2000).
-
(2000)
J. High Energy Phys.
, vol.10
, pp. 006
-
-
Blumenhagen, R.1
Görlich, L.2
Körs, B.3
Lust, D.4
-
38
-
-
85107713046
-
-
note
-
rh is needed.
-
-
-
-
40
-
-
33847609487
-
-
note
-
Assuming that no light fermions with B-violating interactions propagate over the bulk.
-
-
-
-
41
-
-
0035918716
-
-
F.C. Adams, G.L. Kane, M. Mbonye, and M.J. Perry, Int. J. Mod. Phys. A 16, 2399 (2001).
-
(2001)
Int. J. Mod. Phys. A
, vol.16
, pp. 2399
-
-
Adams, F.C.1
Kane, G.L.2
Mbonye, M.3
Perry, M.J.4
-
42
-
-
2342423065
-
-
A. Masiero, M. Peloso, L. Sorbo, and R. Tabbash, Phys. Rev. D 62, 063515 (2000).
-
(2000)
Phys. Rev. D
, vol.62
, pp. 063515
-
-
Masiero, A.1
Peloso, M.2
Sorbo, L.3
Tabbash, R.4
-
43
-
-
0000243554
-
-
R. Allahverdi, K. Enqvist, A. Mazumdar, and A. Perez-Lorenzana, Nucl. Phys. B618, 277 (2001);
-
(2001)
Nucl. Phys.
, vol.B618
, pp. 277
-
-
Allahverdi, R.1
Enqvist, K.2
Mazumdar, A.3
Perez-Lorenzana, A.4
-
46
-
-
0007020120
-
-
[JETP Lett. 5, 24 (1967)].
-
(1967)
JETP Lett.
, vol.5
, pp. 24
-
-
-
47
-
-
0001610662
-
-
Pregeometry, edited by K. Kikkawa, N. Nakanishi, and H. Nariai (Springer-Verlag, Berlin)
-
K. Akama, in Pregeometry, Lecture Notes in Physics Vol. 176, edited by K. Kikkawa, N. Nakanishi, and H. Nariai (Springer-Verlag, Berlin, 1982), p. 267;
-
(1982)
Lecture Notes in Physics Vol. 176
, pp. 267
-
-
Akama, K.1
-
50
-
-
33847620101
-
-
note
-
We also assume that the brane tension is negligible such that Randall-Sundrum type of warping is negligible.
-
-
-
-
51
-
-
33847650777
-
-
note
-
It is typically somewhere between 70 and 180 GeV for the standard thermal scenario.
-
-
-
-
55
-
-
33847643536
-
-
note
-
Note that no color factors were included.
-
-
-
-
56
-
-
33847690980
-
-
note
-
Again, the reader is reminded that by temperature, here we mean a scale for particle density rather than implying that the particles are truly in equilibrium.
-
-
-
-
57
-
-
85107712416
-
-
note
-
τ, we are assuming that the neutrinos have mass. In that case, there may genetically be scalars that can produce dimension-5 operators. However, if these scalars are sufficiently heavy, then their contribution will be negligible. We do not analyze such cases for which beyond the standard model particles actively participate in the short distance physics.
-
-
-
-
59
-
-
33847668219
-
-
note
-
At the one loop level, there is a nonlocal contribution to vv̄ →γγ that is nonzero even in the zero neutrino mass limit [31].
-
-
-
-
60
-
-
33847640026
-
-
note
-
It is trivial to show that particle X cannot have approximately equilibrium distribution if the particles with which X interacts most strongly are not in equilibrium.
-
-
-
-
63
-
-
0343418174
-
-
[Phys. Usp. 39, 461 (1996)].
-
(1996)
Phys. Usp.
, vol.39
, pp. 461
-
-
-
64
-
-
85107715299
-
-
note
-
2 anomaly is also nonvanishing, but there are no nontrivial U(1) gauge configurations analogous to the instanton or sphaleron.
-
-
-
-
66
-
-
33847659472
-
-
note
-
Hill and Ramond have reinterpreted the four-dimensional instanton rate as the amplitude for a massive soliton in five-dimensional gauge theory to propagate over the entire fifth dimension [37].
-
-
-
-
67
-
-
33847687074
-
-
note
-
Unless a lepton asymmetry associated with the conserved B-L number is generated at high scales.
-
-
-
-
68
-
-
85107714613
-
-
note
-
dj are the masses of the particles in the loop.
-
-
-
|