-
1
-
-
85120136436
-
-
A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, 2nd Edition, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley, Reading, MA, 1975.
-
-
-
-
2
-
-
0002764805
-
Proof of a theorem of A.N. Kolmogorov of the invariance of quasi periodic motions under small perturbations of the Hamiltonian
-
V.I. Arnold Proof of a theorem of A.N. Kolmogorov of the invariance of quasi periodic motions under small perturbations of the Hamiltonian Russ. Math. Surveys 18 9 1963 9 36
-
(1963)
Russ. Math. Surveys
, vol.18
, Issue.9
, pp. 9-36
-
-
Arnold, V.I.1
-
3
-
-
0000877933
-
Instability of dynamical systems with several degrees of freedom
-
V.I. Arnold Instability of dynamical systems with several degrees of freedom Sov. Math. Dock. 5 3 1964 581 585
-
(1964)
Sov. Math. Dock.
, vol.5
, Issue.3
, pp. 581-585
-
-
Arnold, V.I.1
-
4
-
-
85120130883
-
-
V.I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, Moscow, 1980.
-
-
-
-
5
-
-
85120109383
-
-
V.I. Arnold, Mathematical Methods of Classical Mechanics (K. Vogtmann, A. Weinstein, Trans.; Russian original published in 1974), Corrected Reprint of the 2nd (1989) Edition, Graduate Texts in Mathematics, Vol. 60, Springer, New York, 1996.
-
-
-
-
6
-
-
85120140244
-
-
G.D. Birkhoff, Dynamical Systems, New York, 1927. With an addendum by Jurgen Moser, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, RI, 1966.
-
-
-
-
7
-
-
84956092860
-
The normal form of a Hamiltonian system
-
A.D. Bryuno The normal form of a Hamiltonian system Russ. Math. Surveys 43 1 1988 25 66
-
(1988)
Russ. Math. Surveys
, vol.43
, Issue.1
, pp. 25-66
-
-
Bryuno, A.D.1
-
8
-
-
84956131233
-
Normalization of a Hamiltonian system near an invariant cycle or torus
-
A.D. Bryuno Normalization of a Hamiltonian system near an invariant cycle or torus Russ. Math. Surveys 44 2 1989 53 89
-
(1989)
Russ. Math. Surveys
, vol.44
, Issue.2
, pp. 53-89
-
-
Bryuno, A.D.1
-
9
-
-
85120135587
-
-
A.D. Bryuno, Local Methods in Nonlinear Differential Equations, Springer, Berlin, 1989.
-
-
-
-
10
-
-
0027395592
-
Chaotic transport by Rossby waves in shear flow
-
D. del-Castillo-Negrete P.J. Morrison Chaotic transport by Rossby waves in shear flow Phys. Fluids A 5 4 1993 948 965
-
(1993)
Phys. Fluids A
, vol.5
, Issue.4
, pp. 948-965
-
-
del-Castillo-Negrete, D.1
Morrison, P.J.2
-
11
-
-
22244493297
-
Area preserving nontwist maps: periodic orbits and transition to chaos
-
D. del-Castillo-Negrete J.M. Greene P.J. Morrison Area preserving nontwist maps: periodic orbits and transition to chaos Physica D 91 1–2 1996 1 23
-
(1996)
Physica D
, vol.91
, Issue.1–2
, pp. 1-23
-
-
del-Castillo-Negrete, D.1
Greene, J.M.2
Morrison, P.J.3
-
12
-
-
0010294123
-
Renormalization and transition to chaos in area preserving nontwist maps
-
D. del-Castillo-Negrete J.M. Greene P.J. Morrison Renormalization and transition to chaos in area preserving nontwist maps Physica D 100 3–4 1997 311 329
-
(1997)
Physica D
, vol.100
, Issue.3–4
, pp. 311-329
-
-
del-Castillo-Negrete, D.1
Greene, J.M.2
Morrison, P.J.3
-
13
-
-
0012097571
-
A universal instability of many-dimensional oscillator systems
-
B.V. Chirikov A universal instability of many-dimensional oscillator systems Phys. Rep. 52 5 1979 264 379
-
(1979)
Phys. Rep.
, vol.52
, Issue.5
, pp. 264-379
-
-
Chirikov, B.V.1
-
14
-
-
0034347544
-
KAM theory and a partial justification of Greene’s criterion for nontwist maps
-
A. Delshams R. de la Llave KAM theory and a partial justification of Greene’s criterion for nontwist maps SIAM J. Math. Anal. 31 6 2000 1235 1269
-
(2000)
SIAM J. Math. Anal.
, vol.31
, Issue.6
, pp. 1235-1269
-
-
Delshams, A.1
de la Llave, R.2
-
15
-
-
85120107408
-
-
A. Delshams, À. Haro, R. de la Llave, Discussions in RLM, University of Texas at Austin, Austin, 2000.
-
-
-
-
16
-
-
0000717287
-
Canonical transformations depending on a small parameter
-
A. Deprit Canonical transformations depending on a small parameter Celestial Mech. 1 1969/1970 12 30
-
(1970)
Celestial Mech.
, vol.1
, pp. 12-30
-
-
Deprit, A.1
-
17
-
-
0000417128
-
Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors
-
C. Falcolini R. de la Llave Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors J. Statist. Phys. 67 3–4 1992 645 666
-
(1992)
J. Statist. Phys.
, vol.67
, Issue.3–4
, pp. 645-666
-
-
Falcolini, C.1
de la Llave, R.2
-
18
-
-
0000330285
-
Formal integrals for an autonomous Hamiltonian system near an equilibrium point
-
A. Giorgilli L. Galgani Formal integrals for an autonomous Hamiltonian system near an equilibrium point Celestial Mech. 17 3 1978 267 280
-
(1978)
Celestial Mech.
, vol.17
, Issue.3
, pp. 267-280
-
-
Giorgilli, A.1
Galgani, L.2
-
19
-
-
0009101129
-
Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point
-
A. Giorgilli Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point Ann. Inst. H. Poincaré Phys. Théor. 48 4 1988 423 439
-
(1988)
Ann. Inst. H. Poincaré Phys. Théor.
, vol.48
, Issue.4
, pp. 423-439
-
-
Giorgilli, A.1
-
20
-
-
85120145175
-
-
A. González, A. Jorba, R. de la Llave, J. Villanueva, KAM theory for non-action-angle Hamiltonian systems, 2000, in press. www.mania.ub.es/dsg/2001/index.html.
-
-
-
-
21
-
-
36749116209
-
A method for determining a stochastic transition
-
J.M. Greene A method for determining a stochastic transition J. Math. Phys. 20 1979 1183
-
(1979)
J. Math. Phys.
, vol.20
, pp. 1183
-
-
Greene, J.M.1
-
22
-
-
0001209620
-
On constructing formal integrals of a Hamiltonian near an equilibrium point
-
F.G. Gustavson On constructing formal integrals of a Hamiltonian near an equilibrium point Astron. J. 71 1966 680 686
-
(1966)
Astron. J.
, vol.71
, pp. 680-686
-
-
Gustavson, F.G.1
-
23
-
-
0033196554
-
Converse KAM theory for monotone positive symplectomorphism
-
À. Haro Converse KAM theory for monotone positive symplectomorphism Nonlinearity 12 1999 1299 1322
-
(1999)
Nonlinearity
, vol.12
, pp. 1299-1322
-
-
Haro, À.1
-
24
-
-
0034258367
-
The primitive function of an exact symplectomorphism
-
À. Haro The primitive function of an exact symplectomorphism Nonlinearity 13 2000 1483 1500
-
(2000)
Nonlinearity
, vol.13
, pp. 1483-1500
-
-
Haro, À.1
-
26
-
-
0033243813
-
A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems
-
A. Jorba A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems Exp. Math. 8 1999 155 195
-
(1999)
Exp. Math.
, vol.8
, pp. 155-195
-
-
Jorba, A.1
-
27
-
-
0001246972
-
On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian
-
A.N. Kolmogorov On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian Dokl. Akad. Nauk. SSR 98 1954 469
-
(1954)
Dokl. Akad. Nauk. SSR
, vol.98
, pp. 469
-
-
Kolmogorov, A.N.1
-
28
-
-
85120118613
-
-
R. de la Llave, A tutorial on KAM theory, 29 January 2001. http://www.ma.utexas.edu/mp_arc .
-
-
-
-
29
-
-
85120104233
-
-
R.S. MacKay, Renormalization in area preserving maps, Ph.D. Thesis, Princeton University, 1982.
-
-
-
-
30
-
-
0000521142
-
Magnetic field lines, Hamiltonian dynamics, and nontwist systems
-
P.J. Morrison Magnetic field lines, Hamiltonian dynamics, and nontwist systems Phys. Plasmas 7 6 2000 2279 2289
-
(2000)
Phys. Plasmas
, vol.7
, Issue.6
, pp. 2279-2289
-
-
Morrison, P.J.1
-
31
-
-
0001851184
-
On invariant curves of area-preserving maps of an annulus
-
J. Moser On invariant curves of area-preserving maps of an annulus Nach. Akad. Wiss. (Göttingen) Math. Phys. Kl. II 1962 1 20
-
(1962)
Nach. Akad. Wiss. (Göttingen) Math. Phys. Kl.
, vol.II
, pp. 1-20
-
-
Moser, J.1
-
32
-
-
84908024292
-
An exponential estimate of the time of stability of nearly integrable Hamiltonian
-
N.N. Nekhorosehv An exponential estimate of the time of stability of nearly integrable Hamiltonian Russ. Math. Surveys 32 1977 1 65
-
(1977)
Russ. Math. Surveys
, vol.32
, pp. 1-65
-
-
Nekhorosehv, N.N.1
-
33
-
-
85120143778
-
-
D. Rana, Proof of accurate upper and lower bounds to stability domains in small denominator problems, Ph.D. Thesis, Princeton University, 1987.
-
-
-
-
34
-
-
0003340667
-
An obstruction method for the destruction of invariant curves
-
A. Olvera C. Simó An obstruction method for the destruction of invariant curves Physica D 26 13 1987 181 192
-
(1987)
Physica D
, vol.26
, Issue.13
, pp. 181-192
-
-
Olvera, A.1
Simó, C.2
-
35
-
-
85120146308
-
-
C. Simó, Estimates of the error in normal forms of Hamiltonian systems. Applications to effective stability and examples. Long-term dynamical behaviour of natural and artificial N -body systems (Cortina d’Ampezzo, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 246, Kluwer Academic Publishers, Dordrecht, 1988, pp. 481–503.
-
-
-
-
36
-
-
54649083821
-
Invariant curves of analytic perturbed nontwist area preserving maps
-
C. Simó Invariant curves of analytic perturbed nontwist area preserving maps Regular Chaotic Dyn. 3 1998 180
-
(1998)
Regular Chaotic Dyn.
, vol.3
, pp. 180
-
-
Simó, C.1
-
37
-
-
0030497330
-
Approximation of invariant surfaces by periodic orbits in high-dimensional maps: some rigorous results
-
S. Tompaidis Approximation of invariant surfaces by periodic orbits in high-dimensional maps: some rigorous results Exp. Math. 5 3 1996 197 209
-
(1996)
Exp. Math.
, vol.5
, Issue.3
, pp. 197-209
-
-
Tompaidis, S.1
-
38
-
-
85120135864
-
-
A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conference Series in Mathematics 29, American Mathematical Society, Providence, RI, 1977.
-
-
-
|