메뉴 건너뛰기




Volumn 123, Issue 3, 2002, Pages 354-360

Prediction of flank wear of different coated drills for JIS SUS 304 stainless steel using neural network

Author keywords

Drilling; Radial basis function network; Stainless steel; Taguchi method

Indexed keywords

COMPUTER SIMULATION; DATABASE SYSTEMS; DRILLING; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; WEAR OF MATERIALS;

EID: 0037052520     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0924-0136(01)01257-2     Document Type: Article
Times cited : (30)

References (20)
  • 1
    • 15844405414 scopus 로고
    • Neural network sensor fusion for tool condition monitoring
    • (1990) Ann. CIRP , vol.39 , pp. 101-105
    • Dornfeld, D.A.1
  • 2
    • 0006111669 scopus 로고
    • Recognition of the cutting states for the difficult-to-cut material application of the pattern recognition technique
    • (1982) Ann. CIRP , vol.31 , pp. 97-101
    • Zhang, Y.Z.1
  • 6
    • 0026258934 scopus 로고
    • Neural networks - Their applications and perspectives in intelligent machining
    • (1991) Comp. Ind. , vol.17 , pp. 101-119
    • Barschdorff, D.1
  • 12
    • 0025538105 scopus 로고
    • Titanium carbonitride coatings result in further tool life increases for HSS tools
    • (1990) Werk. Bett. , vol.123 , Issue.12 , pp. 905-907
    • Wagner, R.1
  • 18
    • 0006076442 scopus 로고    scopus 로고
    • Cutting performance of different coated drills in drilling of JIS SUS 304 stainless steel
    • in Chinese
    • (1999) J. Technol. , vol.14 , Issue.2 , pp. 197-203
    • Tsao, C.C.1    Chen, W.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.