-
2
-
-
0026814596
-
-
A. E. Pryzbyla, J. Robbins, N. Menon, and H. D. Peck, FEMS Microbiol. Rev. 88, 109 (1992).
-
(1992)
FEMS Microbiol. Rev.
, vol.88
, pp. 109
-
-
Pryzbyla, A.E.1
Robbins, J.2
Menon, N.3
Peck, H.D.4
-
6
-
-
0033556301
-
-
Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure (London) 7, 13 (1999).
-
(1999)
Structure (London)
, vol.7
, pp. 13
-
-
Nicolet, Y.1
Piras, C.2
Legrand, P.3
Hatchikian, E.C.4
Fontecilla-Camps, J.C.5
-
7
-
-
0032483966
-
-
J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, Science 282, 1853, (1998).
-
(1998)
Science
, vol.282
, pp. 1853
-
-
Peters, J.W.1
Lanzilotta, W.N.2
Lemon, B.J.3
Seefeldt, L.C.4
-
8
-
-
0034669689
-
-
A. L. De Lacey, C. Stadler, C. Cavazza, E. C. Hatchikian, and V. M. Fernandez, J. Am. Chem. Soc. 122, 11232 (2000).
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 11232
-
-
De Lacey, A.L.1
Stadler, C.2
Cavazza, C.3
Hatchikian, E.C.4
Fernandez, V.M.5
-
9
-
-
0032403791
-
-
A. J. Pierik, M. Hulstein, W. R. Hagen, and S. P. Albracht, Eur. J. Biochem. 258, 572 (1998).
-
(1998)
Eur. J. Biochem.
, vol.258
, pp. 572
-
-
Pierik, A.J.1
Hulstein, M.2
Hagen, W.R.3
Albracht, S.P.4
-
10
-
-
0035961483
-
-
Y. Nicolet, A. L. De Lacey, X. Vernede, V. M. Fernandez, E. C. Hatchikian, and J. C. Fontecilla-Camps, J. Am. Chem. Soc. 123, 1596 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 1596
-
-
Nicolet, Y.1
De Lacey, A.L.2
Vernede, X.3
Fernandez, V.M.4
Hatchikian, E.C.5
Fontecilla-Camps, J.C.6
-
13
-
-
0037042289
-
-
note
-
2 metabolism and generalizes the feature the electronics structure of the 2Fe subunit. The proposed redox states are consistent with all experimental data, such as geometries, IR spectrum EPR properties.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 5175
-
-
Liu, Z.-P.1
Hu, P.2
-
14
-
-
23244460838
-
-
(a) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992);
-
(1992)
Phys. Rev. B
, vol.46
, pp. 6671
-
-
Perdew, J.P.1
Chevary, J.A.2
Vosko, S.H.3
Jackson, K.A.4
Pederson, M.R.5
Singh, D.J.6
Fiolhais, C.7
-
16
-
-
0000513699
-
-
note
-
The calculation methods used in this work are the same as that described in our previous paper, Ref. 13. The program used is CASTEP (see Ref. 23), which implements the DFT total energy calculation with plane wave basis set and ultrasoft pseudopotentials [see Ref. 14(b)]. The transition states searched with constrained minimization technique (see Refs. 16, 17). The accuracy of the current DFT total energy calculation, in particular for the calculation of reaction barriers (the error of the barrier is normally within 0.1 eV), has been demonstrated previously (see Refs. 13, 16, 17 and references therein). This calculation methods has been used to study biological systems, e.g., nitrogen fixation on MoFe6S9 (the active site of nitrogenase) by Norskov group. [T. H. Rod, B. Hammer, and J. K. Norskov, Phys. Rev. Lett. 82, 4054 (1999)].
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 4054
-
-
Rod, T.H.1
Hammer, B.2
Norskov, J.K.3
-
25
-
-
0035820991
-
-
M. Razavet, S. C. Davies, D. L. Hughes, and C. J. Pickett, Chem. Comm. 9, 847 (2001).
-
(2001)
Chem. Comm.
, vol.9
, pp. 847
-
-
Razavet, M.1
Davies, S.C.2
Hughes, D.L.3
Pickett, C.J.4
-
26
-
-
0011438292
-
-
note
-
2O near the N in the DTN, complex 6 can be stable.
-
-
-
-
27
-
-
0011471104
-
-
note
-
Here the barriers for the proton and electron transfer are not considered since these processes are well-addressed and are believed to be efficient the enzymatic catalysis (see Refs. 1-7).
-
-
-
-
28
-
-
0011438293
-
-
note
-
d-H bond breaking increases to 0.52 eV.
-
-
-
-
29
-
-
11944256577
-
-
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
-
(1992)
Rev. Mod. Phys.
, vol.64
, pp. 1045
-
-
Payne, M.C.1
Teter, M.P.2
Allan, D.C.3
Arias, T.A.4
Joannopoulos, J.D.5
|