메뉴 건너뛰기




Volumn 39, Issue 4, 2002, Pages 816-828

The age of a Galton-Watson population with a geometric offspring distribution

Author keywords

Backward Galton Watson process; Critical; Geometric offspring distribution; Immigration stopped at zero; Population age; Random past

Indexed keywords


EID: 0036998566     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1037816021     Document Type: Article
Times cited : (6)

References (21)
  • 2
    • 0016556056 scopus 로고
    • The reverse Galton-Watson process
    • ESTY, W. W. (1975). The reverse Galton-Watson process. J. Appl. Prob. 12, 574-580.
    • (1975) J. Appl. Prob. , vol.12 , pp. 574-580
    • Esty, W.W.1
  • 4
    • 0000197604 scopus 로고
    • A refinement of two theorems in the theory of branching processes
    • HEATHCOTE, C. R., SENETA, E. AND VERE-JONES, D. (1967). A refinement of two theorems in the theory of branching processes. Theory Prob. Appl. 12, 297-301.
    • (1967) Theory Prob. Appl. , vol.12 , pp. 297-301
    • Heathcote, C.R.1    Seneta, E.2    Vere-Jones, D.3
  • 5
    • 0000104507 scopus 로고
    • The critical branching process with immigration stopped at zero
    • IVANOFF, G. B. AND SENETA, E. (1985). The critical branching process with immigration stopped at zero. J. Appl. Prob. 22, 223-227.
    • (1985) J. Appl. Prob. , vol.22 , pp. 223-227
    • Ivanoff, G.B.1    Seneta, E.2
  • 6
    • 0001421353 scopus 로고
    • On recurrence and transience of growth models
    • KERSTING, G. (1986). On recurrence and transience of growth models. J. Appl. Prob. 23, 614-625.
    • (1986) J. Appl. Prob. , vol.23 , pp. 614-625
    • Kersting, G.1
  • 7
    • 0013382646 scopus 로고
    • Estimating the age of a Galton-Watson process with binomial offspring distribution
    • KOTEESWARAN, P. (1989). Estimating the age of a Galton-Watson process with binomial offspring distribution. Stock. Analysis Appl. 7, 413-423.
    • (1989) Stock. Analysis Appl. , vol.7 , pp. 413-423
    • Koteeswaran, P.1
  • 8
    • 0013335523 scopus 로고
    • The age distribution of Markov processes
    • LEVIKSON, B. (1977). The age distribution of Markov processes. J. Appl. Prob. 14, 492-506.
    • (1977) J. Appl. Prob. , vol.14 , pp. 492-506
    • Levikson, B.1
  • 10
    • 0013338435 scopus 로고    scopus 로고
    • The concept of duality and applications to Markov processes arising in neutral population genetics models
    • MÖHLE, M. (1999). The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5, 761-777.
    • (1999) Bernoulli , vol.5 , pp. 761-777
    • Möhle, M.1
  • 11
    • 0013387309 scopus 로고
    • On the age distribution of a Markov chain
    • PAKES, A. G. (1978). On the age distribution of a Markov chain. J. Appl. Prob. 15, 65-77.
    • (1978) J. Appl. Prob. , vol.15 , pp. 65-77
    • Pakes, A.G.1
  • 12
    • 0001757402 scopus 로고
    • The age of a Markov process
    • PAKES, A. G. (1979). The age of a Markov process. Stock. Process Appl. 8, 277-303.
    • (1979) Stock. Process Appl. , vol.8 , pp. 277-303
    • Pakes, A.G.1
  • 13
    • 0013434043 scopus 로고
    • Comments on the age distribution of Markov processes
    • PAKES, A. G. AND TAVARÉ, S. (1981), Comments on the age distribution of Markov processes. Adv. Appl. Prob. 13, 681-703.
    • (1981) Adv. Appl. Prob. , vol.13 , pp. 681-703
    • Pakes, A.G.1    Tavaré, S.2
  • 14
    • 0013376702 scopus 로고
    • A note on the models using the branching process with immigration stopped at zero
    • SENETA, E. AND TAVARÉ, S. (1983). A note on the models using the branching process with immigration stopped at zero. J. Appl. Prob. 20, 11-18.
    • (1983) J. Appl. Prob. , vol.20 , pp. 11-18
    • Seneta, E.1    Tavaré, S.2
  • 16
    • 0013426370 scopus 로고
    • Estimating the age of a Galton-Watson branching process
    • STIGLER, S. M. (1970). Estimating the age of a Galton-Watson branching process. Biometrika 57, 505-512.
    • (1970) Biometrika , vol.57 , pp. 505-512
    • Stigler, S.M.1
  • 17
    • 0013431475 scopus 로고
    • Time reversal and age distributions, I. Discrete-time Markov chains
    • TAVARÉ, S. (1980). Time reversal and age distributions, I. Discrete-time Markov chains. J. Appl. Prob. 17, 33-46.
    • (1980) J. Appl. Prob. , vol.17 , pp. 33-46
    • Tavaré, S.1
  • 18
    • 0000961930 scopus 로고
    • A conditional limit theorem for a critical branching process with immigration
    • VATUTIN, V. A. (1977). A conditional limit theorem for a critical branching process with immigration. Mat. Zametki 21, 727-736.
    • (1977) Mat. Zametki , vol.21 , pp. 727-736
    • Vatutin, V.A.1
  • 19
    • 0000228473 scopus 로고
    • Conditions for degeneracy of φ-branching processes with random φ
    • YANEV, N. M. (1975). Conditions for degeneracy of φ-branching processes with random φ. Theory Prob. Appl. 20, 421-427.
    • (1975) Theory Prob. Appl. , vol.20 , pp. 421-427
    • Yanev, N.M.1
  • 20
    • 0000775860 scopus 로고
    • Life-periods of a branching process with immigration
    • ZUBKOV, A. M. (1972). Life-periods of a branching process with immigration. Theory Prob. Appl. 17, 174-183.
    • (1972) Theory Prob. Appl. , vol.17 , pp. 174-183
    • Zubkov, A.M.1
  • 21
    • 0002872227 scopus 로고
    • Analogies between Galton-Watson processes and φ-branching processes
    • ZUBKOV, A. M. (1974). Analogies between Galton-Watson processes and φ-branching processes. Theory Prob. Appl. 19, 309-331.
    • (1974) Theory Prob. Appl. , vol.19 , pp. 309-331
    • Zubkov, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.