-
1
-
-
0024732015
-
Optimal feedback controls
-
L. Berkovitz, Optimal feedback controls. SIAM J. Control Optim., 27(5):991-1006, 1989.
-
(1989)
SIAM J. Control Optim.
, vol.27
, Issue.5
, pp. 991-1006
-
-
Berkovitz, L.1
-
2
-
-
0031700048
-
On the Riccati partial differential equation for nonlinear Bolza and Lagrange problems
-
C. Byrnes. On the Riccati partial differential equation for nonlinear Bolza and Lagrange problems. J. Math. Systems Estim. Control, 8(1):1-54, 1998.
-
(1998)
J. Math. Systems Estim. Control
, vol.8
, Issue.1
, pp. 1-54
-
-
Byrnes, C.1
-
3
-
-
0026254228
-
Some characterizations of optimal trajectories in optimal control theory
-
P. Cannarsa and H. Frankowska. Some characterizations of optimal trajectories in optimal control theory. SIAM J. Control Optim., 29(6):1322-1347, 1991.
-
(1991)
SIAM J. Control Optim.
, vol.29
, Issue.6
, pp. 1322-1347
-
-
Cannarsa, P.1
Frankowska, H.2
-
4
-
-
21344456605
-
Conjugate points and shocks in nonlinear optimal control
-
N. Caroff and H. Frankowska. Conjugate points and shocks in nonlinear optimal control. Trans. Amer. Math. Soc. 348(8):3133-3153, 1996.
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, Issue.8
, pp. 3133-3153
-
-
Caroff, N.1
Frankowska, H.2
-
7
-
-
0034458920
-
Extended Hamilton-Jacobi characterization of value functions in optimal control
-
G.N. Galbraith. Extended Hamilton-Jacobi characterization of value functions in optimal control. SIAM J. Control Optim., 39(1):281-305, 2001.
-
(2001)
SIAM J. Control Optim.
, vol.39
, Issue.1
, pp. 281-305
-
-
Galbraith, G.N.1
-
8
-
-
4243819695
-
Regularity of the optimal feedback and the value function in convex problems of optimal control
-
submitted
-
R. Goebel. Regularity of the optimal feedback and the value function in convex problems of optimal control. submitted.
-
-
-
Goebel, R.1
-
9
-
-
0004330070
-
Convex optimal control problems with smooth Hamiltonians
-
submitted
-
R. Goebel. Convex optimal control problems with smooth Hamiltonians. submitted.
-
-
-
Goebel, R.1
-
10
-
-
0037005477
-
Generalized conjugacy in Hamilton-Jacobi theory for fully convex Lagrangians
-
R. Goebel, and R.T. Rockafellar. Generalized conjugacy in Hamilton-Jacobi theory for fully convex Lagrangians. J. Convex Anal., 9(1), 2002.
-
(2002)
J. Convex Anal.
, vol.9
, Issue.1
-
-
Goebel, R.1
Rockafellar, R.T.2
-
11
-
-
0014863723
-
Conjugate convex functions in optimal control and the calculus of variations
-
R.T. Rockafellar. Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl., 32:174-222, 1970.
-
(1970)
J. Math. Anal. Appl.
, vol.32
, pp. 174-222
-
-
Rockafellar, R.T.1
-
12
-
-
84972555015
-
Generalized Hamiltonian equations for convex problems of Lagrange
-
R.T. Rockafellar. Generalized Hamiltonian equations for convex problems of Lagrange. Pacific J. Math., 33(2):411-427, 1970.
-
(1970)
Pacific J. Math.
, vol.33
, Issue.2
, pp. 411-427
-
-
Rockafellar, R.T.1
-
13
-
-
0023347574
-
Linear-quadratic programming and optimal control
-
R.T. Rockafellar. Linear-quadratic programming and optimal control. SIAM J. Control Optim., 25(3):781-814, 1987.
-
(1987)
SIAM J. Control Optim.
, vol.25
, Issue.3
, pp. 781-814
-
-
Rockafellar, R.T.1
-
14
-
-
0034780555
-
Convexity in Hamilton-Jacobi theory, 1: Dynamics and duality
-
R.T. Rockafellar and P.R. Wolenski. Convexity in Hamilton-Jacobi theory, 1: Dynamics and duality. SIAM J. Control Optim., 39(5):1323-1350, 2000.
-
(2000)
SIAM J. Control Optim.
, vol.39
, Issue.5
, pp. 1323-1350
-
-
Rockafellar, R.T.1
Wolenski, P.R.2
|