-
1
-
-
0021892282
-
Fuzzy identification of systems and its applications for modeling and control
-
T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications for modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, 15, 1985, 116-132.
-
(1985)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.15
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
2
-
-
0035127049
-
Partitioning of linearly transformed input space in adaptive network based fuzzy inference system
-
J. Ryu and S. Won, “Partitioning of Linearly Transformed Input space in Adaptive Network Based Fuzzy Inference System,” IEICE Trans. INF. and SYST., E84-D(1), 2001, 213-216.
-
(2001)
IEICE Trans. INF. and SYST.
, vol.1
, pp. 213-216
-
-
Ryu, J.1
Won, S.2
-
3
-
-
0001165659
-
Fuzzy system modeling by fuzzy partition and GA hybrid schemes
-
Y. H. Joo, H. S. Hwang and K. B. Kim, “Fuzzy System Modeling by Fuzzy Partition and GA Hybrid Schemes,” Fuzzy Sets and System, 86, 1997, 279-288.
-
(1997)
Fuzzy Sets and System
, vol.86
, pp. 279-288
-
-
Joo, Y.H.1
Hwang, H.S.2
Kim, K.B.3
-
4
-
-
0027544110
-
A fuzzy-logic-based approach to qualitative modeling
-
M. Sugeno and T. Yasukawa, “A Fuzzy-logic-based Approach to Qualitative Modeling,” IEEE Trans. on Fuzzy Sys., 1(1), 1993, 7-31.
-
(1993)
IEEE Trans. on Fuzzy Sys.
, vol.1
, Issue.1
, pp. 7-31
-
-
Sugeno, M.1
Yasukawa, T.2
-
5
-
-
0028482884
-
Approximate clustering via the mountain method
-
R. R. Yager and D. P. Filev, “Approximate Clustering via the Mountain method,” IEEE Trans. Syst., Man. Cybern., 24(8), 1994, 1279-1284.
-
(1994)
IEEE Trans. Syst., Man. Cybern.
, vol.24
, Issue.8
, pp. 1279-1284
-
-
Yager, R.R.1
Filev, D.P.2
-
6
-
-
0028448342
-
Empirical study on learning in fuzzy systems by rice test analysis
-
H. Ishibuchi, k. Nozaki, H. Tanaka, Y. Hosaka, and M. Matsuda, “Empirical Study on Learning in Fuzzy Systems by Rice Test Analysis,” Fuzzy Sets Syst., 64, 1994, 120-144.
-
(1994)
Fuzzy Sets Syst.
, vol.64
, pp. 120-144
-
-
Ishibuchi, H.1
Nozaki, K.2
Tanaka, H.3
Hosaka, Y.4
Matsuda, M.5
-
7
-
-
0003802343
-
Classification and regression trees
-
Wadsworth, Inc., Belmont, California
-
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and Regression Trees" Wadsworth, Inc., Belmont, California, 1984.
-
(1984)
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
8
-
-
0026943536
-
Generating fuzzy rules by learning from examples
-
L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man. Cybern., 22, 1992, 1414-1427.
-
(1992)
IEEE Trans. Syst., Man. Cybern.
, vol.22
, pp. 1414-1427
-
-
Wang, L.-X.1
Mendel, J.M.2
-
10
-
-
0000212165
-
About the use of fuzzy clustering techniques for fuzzy model identification
-
A. F. Gomez-Skarmeta, M. Delgado, M. A. Vila, “About the Use of Fuzzy Clustering Techniques for Fuzzy Model Identification,” Fuzzy Sets and Systems, 106, 1999, 179-188.
-
(1999)
Fuzzy Sets and Systems
, vol.106
, pp. 179-188
-
-
Gomez-Skarmeta, A.F.1
Delgado, M.2
Vila, M.A.3
-
11
-
-
0013300229
-
A study on the development of skew compensation models in the plate mill
-
MS thesis, POSTECH; M0208335
-
Sangkyu Kim, “A Study on the Development of Skew Compensation Models in the Plate Mill,” MS thesis, POSTECH, 2000, M0208335.
-
(2000)
-
-
Kim, S.1
-
12
-
-
0003450542
-
The nature of statistical learning theory
-
New York: Spring-Verlag
-
V. N. Vapnic, “The Nature of Statistical Learning Theory,” New York: Spring-Verlag, 1995.
-
(1995)
-
-
Vapnic, V.N.1
-
13
-
-
0003425664
-
Support vector machines for classification and regression
-
University of Southampton
-
S. R. Gunn, “Support Vector Machines for Classification and Regression,” Image Speech and Intelligent Systems Research Group. University of Southampton, 1998.
-
(1998)
Image Speech and Intelligent Systems Research Group
-
-
Gunn, S.R.1
-
14
-
-
0035311654
-
On the modeling of nonlinear dynamic systems using support vector neural networks
-
W. C. Chan, W. C. Chan, K. C. Cheung and C. J. Haris, “On the Modeling of Nonlinear Dynamic Systems Using Support Vector Neural Networks,” Engineering Application of Artificial Intelligence, 14, 2001, 105-113.
-
(2001)
Engineering Application of Artificial Intelligence
, vol.14
, pp. 105-113
-
-
Chan, W.C.1
Chan, W.C.2
Cheung, K.C.3
Haris, C.J.4
-
15
-
-
0003798635
-
An introduction to support vector machines and other kernel-based learning methods
-
Cambridge University Press
-
N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines and other kernel-based learning methods,” Cambridge University Press, 2000.
-
(2000)
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
16
-
-
0033346003
-
Support vector machines for the fuzzy neural networks
-
Jin-Tsong Jeng and Tsu-Tain Lee, “Support Vector Machines for the Fuzzy Neural Networks,” IEEE SMC ‘99 Conference Proceedings, 6, 1999, 115-120.
-
(1999)
IEEE SMC ‘99 Conference Proceedings
, vol.6
, pp. 115-120
-
-
Jeng, J.-T.1
Lee, T.-T.2
-
17
-
-
0034227542
-
Analysis of input-output clustering for determining center of RBFN
-
Z. Uykan, C. Guzelis, and M. E. Celebi, “Analysis of Input-output Clustering for Determining Center of RBFN”, IEEE Trans. on Neural Network, vol. 11, no. 4, pp. 851-858, 2000.
-
(2000)
IEEE Trans. on Neural Network
, vol.11
, Issue.4
, pp. 851-858
-
-
Uykan, Z.1
Guzelis, C.2
Celebi, M.E.3
|