메뉴 건너뛰기




Volumn 4, Issue , 2002, Pages 605-610

A weighted fuzzy reasoning and its corresponding neural network

Author keywords

Approximate reasoning; Fuzzy neural networks; Local and global weights; Weighted fuzzy production rules

Indexed keywords

ALGORITHMS; FUZZY SETS; LEARNING SYSTEMS; OPTIMIZATION;

EID: 0036970140     PISSN: 08843627     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (13)
  • 1
    • 0000714939 scopus 로고
    • Identification of fuzzy relational equations by fuzzy neural networks
    • A. Blanco, M. Delgado, I. Requena, "Identification of fuzzy relational equations by fuzzy neural networks", Fuzzy Sets and Systems, vol. 71, pp.215-226, 1995.
    • (1995) Fuzzy Sets and Systems , vol.71 , pp. 215-226
    • Blanco, A.1    Delgado, M.2    Requena, I.3
  • 2
    • 0000499483 scopus 로고    scopus 로고
    • Weighted fuzzy production rules
    • D. S. Yeung and E. C. C. Tsang, "Weighted fuzzy production rules", Fuzzy Sets and Systems, vol. 88, pp.299-313, 1997.
    • (1997) Fuzzy Sets and Systems , vol.88 , pp. 299-313
    • Yeung, D.S.1    Tsang, E.C.C.2
  • 3
    • 0032025183 scopus 로고    scopus 로고
    • A multilevel weighted fuzzy reasoning algorithm for expert systems
    • D. S. Yeung and E. C. C. Tsang, "A multilevel weighted fuzzy reasoning algorithm for expert systems", IEEE Transactions on Systems, Man and Cybernetics, vol.28, no.2, pp.149-158, 1998.
    • (1998) IEEE Transactions on Systems, Man and Cybernetics , vol.28 , Issue.2 , pp. 149-158
    • Yeung, D.S.1    Tsang, E.C.C.2
  • 5
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, "The use of multiple measurements in taxonomic problems", Ann. Eugenics, vol. 7, pp. 179-188, 1936.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 6
    • 0030576819 scopus 로고    scopus 로고
    • Learning fuzzy rules and approximate reasoning in fuzzy networks and hybrid systems
    • N. K. Kasabov, "Learning fuzzy rules and approximate reasoning in fuzzy networks and hybrid systems", Fuzzy Sets and Systems, vol. 82, pp.135-149, 1996.
    • (1996) Fuzzy Sets and Systems , vol.82 , pp. 135-149
    • Kasabov, N.K.1
  • 8
    • 0003056928 scopus 로고    scopus 로고
    • Some considerations on conventional neuro-fuzzy learning algorithms by gradient descent method
    • Yan Shi and Masaharu Mizumoto, "Some considerations on conventional neuro-fuzzy learning algorithms by gradient descent method", Fuzzy Sets and Systems, vol. 112, pp.51-63, 2000.
    • (2000) Fuzzy Sets and Systems , vol.112 , pp. 51-63
    • Shi, Y.1    Mizumoto, M.2
  • 9
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Y. Yuan and M. J. Shaw, "Induction of fuzzy decision trees", Fuzzy Sets and Systems, vol. 69, pp.125-139, 1995.
    • (1995) Fuzzy Sets and Systems , vol.69 , pp. 125-139
    • Yuan, Y.1    Shaw, M.J.2
  • 10
    • 0029359091 scopus 로고
    • An acquisition of operator's rules for collision avoidance using fuzzy neural networks
    • August
    • I. Hiraga, Y. Uchikawa, and S. Nakayama, "An Acquisition of Operator's Rules for Collision Avoidance Using Fuzzy Neural Networks", IEEE Trans. On Fuzzy Systems, vol. 3, no. 3, August, pp. 280-287, 1995.
    • (1995) IEEE Trans. On Fuzzy Systems , vol.3 , Issue.3 , pp. 280-287
    • Hiraga, I.1    Uchikawa, Y.2    Nakayama, S.3
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adpative-neural-based fuzzy inference system
    • May/June
    • J.R. Jang, "ANFIS: Adpative-Neural-Based Fuzzy Inference System", IEEE Trans. On SMC, vol. 23, no. 3, May/June, pp. 665-685,1993.
    • (1993) IEEE Trans. On SMC , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.R.1
  • 12
    • 0003937891 scopus 로고
    • Lab for AI research, Fairchild Camera, Palo Alto, GA, Fairchild Tech. Rep. no. 626
    • B.C. Buchanan, and R.O. Duda, "Principles of rule-based expert systems", Lab for AI research, Fairchild Camera, Palo Alto, GA, Fairchild Tech. Rep. no. 626, 1982.
    • (1982) Principles of Rule-based Expert Systems
    • Buchanan, B.C.1    Duda, R.O.2
  • 13
    • 0028571244 scopus 로고
    • Modeling and formulating fuzzy knowledge bases using neural networks
    • R. Yager, "Modeling and Formulating Fuzzy Knowledge Bases Using Neural Networks", Neural Networks, vol. 7, No. 8, pp.1273-1283, 1994.
    • (1994) Neural Networks , vol.7 , Issue.8 , pp. 1273-1283
    • Yager, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.