메뉴 건너뛰기




Volumn , Issue , 2002, Pages 205-210

Polynomial-time reinforcement learning of near-optimal policies

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; DECISION THEORY; GAME THEORY; MARKOV PROCESSES; POLYNOMIALS; THEOREM PROVING;

EID: 0036923099     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (8)
  • 3
    • 84880854156 scopus 로고    scopus 로고
    • R-max: A general polynomial time algorithm for near-optimal reinforcement learning
    • San Francisco, CA: Morgan Kaufmann Publishers, Inc.
    • Brafman, R., and Tennenholtz, M. 2001. R-max: A general polynomial time algorithm for Near-Optimal reinforcement learning. In Proc. of the 17th International Conf. on Artificial Intelligence (IJCAI-01), 953-958. San Francisco, CA: Morgan Kaufmann Publishers, Inc.
    • (2001) Proc. of the 17th International Conf. on Artificial Intelligence (IJCAI-01) , pp. 953-958
    • Brafman, R.1    Tennenholtz, M.2
  • 7
    • 0012257655 scopus 로고    scopus 로고
    • Near-optimal reinforcement learning in polynomial time
    • Morgan Kaufmann, San Francisco, CA
    • Kearns, M., and Singh, S. 1998. Near-optimal reinforcement learning in polynomial time. In Proc. 15th International Conf. on Machine Learning, 260-268. Morgan Kaufmann, San Francisco, CA.
    • (1998) Proc. 15th International Conf. on Machine Learning , pp. 260-268
    • Kearns, M.1    Singh, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.