메뉴 건너뛰기




Volumn 31, Issue 2, 2002, Pages 383-406

Chaotic time series prediction with feed-forward and recurrent neural nets

Author keywords

Chaotic time series; Logistic map; Neural networks; Prediction

Indexed keywords

COMPUTER SIMULATION; MAPS; RECURRENT NEURAL NETWORKS; TIME SERIES ANALYSIS;

EID: 0036919075     PISSN: 03248569     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (41)
  • 1
    • 0030130831 scopus 로고    scopus 로고
    • Using percentage accuracy to measure neural network predictions in stock market movements
    • Brownstone, D. (1996) Using percentage accuracy to measure neural network predictions in Stock Market movements. Neurocomputing, 10, 237-250.
    • (1996) Neurocomputing , vol.10 , pp. 237-250
    • Brownstone, D.1
  • 3
    • 0030130754 scopus 로고    scopus 로고
    • A multi-component nonlinear prediction system for the S& P 500 index
    • Chenoweth, T. and Obradović, Z. (1996) A multi-component nonlinear prediction system for the S& P 500 index. Neurocomputing, 10, 275-290.
    • (1996) Neurocomputing , vol.10 , pp. 275-290
    • Chenoweth, T.1    Obradović, Z.2
  • 4
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • Dorffner, G. (1996) Neural Networks for Time Series Processing. Neural Network Worlds, 6 (4), 447-468.
    • (1996) Neural Network Worlds , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. (1990) Finding Structure in Time. Cognitive Science, 14, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0003000735 scopus 로고
    • Faster learning variations on backpropagation: An empirical study
    • Morgan Kaufmann, Los Altos, USA
    • Fahlman, S.E. (1988) Faster learning variations on backpropagation: an empirical study. Proc. 1983 Connectionist Models Summer School, Morgan Kaufmann, Los Altos, USA, 38-51.
    • (1988) Proc. 1983 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 7
    • 0012166452 scopus 로고    scopus 로고
    • Forecasting exchange rates using neural networks for technical trading rules
    • Franses, P.H. and Griensven, K. (1998) Forecasting exchange rates using neural networks for technical trading rules. Studies in Nonlinear Dynamics and Econometrics, 2 (4), 109-114.
    • (1998) Studies in Nonlinear Dynamics and Econometrics , vol.2 , Issue.4 , pp. 109-114
    • Franses, P.H.1    Griensven, K.2
  • 8
    • 0031105896 scopus 로고    scopus 로고
    • The new ERA in supervised learning
    • Gorse, D., Shepherd, A.J. and Taylor, J.G. (1997) The new ERA in supervised learning. Neural Networks, 10 (2), 343-352.
    • (1997) Neural Networks , vol.10 , Issue.2 , pp. 343-352
    • Gorse, D.1    Shepherd, A.J.2    Taylor, J.G.3
  • 9
    • 84971659337 scopus 로고    scopus 로고
    • A comparative study on feedforward and recurrent neural networks in time series prediction using gradient descent learning
    • Trappl, R., ed., Austrian Society for Cybernetics Studies, Vienna
    • Hallas, M. and Dorffner, G. (1998) A comparative study on feedforward and recurrent neural networks in time series prediction using gradient descent learning. In: Trappl, R., ed., Proc. of the 14th European Meeting on Cybernetics and Systems Research, Austrian Society for Cybernetics Studies, Vienna, 2, 644-647.
    • (1998) Proc. of the 14th European Meeting on Cybernetics and Systems Research , vol.2 , Issue.644-647
    • Hallas, M.1    Dorffner, G.2
  • 10
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
    • Hansen, J.V. and Nelson, R.D. (1997) Neural Networks and Traditional Time Series Methods: A Synergistic Combination in State Economic Forecasts. IEEE Transactions on Neural Networks, 8 (4), 863-873.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 11
    • 0004121079 scopus 로고
    • Technical Report 8604, Institute for Cognitive Science, University of California, San Diego, La Jolla, CA, USA
    • Jordan, M.I. (1986) Serial order: A parallel distributed processing approach. Technical Report 8604, Institute for Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
    • (1986) Serial Order: A Parallel Distributed Processing Approach
    • Jordan, M.I.1
  • 12
    • 0030555559 scopus 로고    scopus 로고
    • Selective learning for neural network forecasting of stock markets
    • Kohara, K., Fukuhara, Y. and Nakamura, Y. (1996) Selective learning for neural network forecasting of stock markets. Neural Computing & Appl., 4, 143-148.
    • (1996) Neural Computing & Appl. , vol.4 , pp. 143-148
    • Kohara, K.1    Fukuhara, Y.2    Nakamura, Y.3
  • 13
    • 84983857211 scopus 로고
    • Forecasting exchange rates using feed-forward and recurrent neural networks
    • Kuan, C.M. and Liu, T. (1995) Forecasting exchange rates using feed-forward and recurrent neural networks. Journal of Applied Econometrics, 10, 347-364.
    • (1995) Journal of Applied Econometrics , vol.10 , pp. 347-364
    • Kuan, C.M.1    Liu, T.2
  • 15
    • 0030110988 scopus 로고
    • Neural network prediction analysis: The bankruptcy case
    • Leshno, M. and Spector, Y. (1995) Neural network prediction analysis: The bankruptcy case. Neurocomputing, 10 (2-4), 125-147.
    • (1995) Neurocomputing , vol.10 , Issue.2-4 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 17
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey, M.C., and Glass, L. (1977) Oscillation and chaos in physiological control systems. Science, 197.
    • (1977) Science , pp. 197
    • Mackey, M.C.1    Glass, L.2
  • 18
    • 0030110886 scopus 로고    scopus 로고
    • Using neural networks to forecast the S& P 100 implied vioiatility
    • Malliaris, M. and Salchenberger, L. (1996) Using neural networks to forecast the S& P 100 implied vioiatility. Neurocomputing, 10, 183-195.
    • (1996) Neurocomputing , vol.10 , pp. 183-195
    • Malliaris, M.1    Salchenberger, L.2
  • 19
    • 0028312789 scopus 로고
    • Evolving recurrent perceptrons for time-series modeling
    • McDonnell, J.R. and Waagen, D. (1994) Evolving recurrent perceptrons for time-series modeling. IEEE Transactions on Neural Networks, 5 (1), 24-38.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 24-38
    • McDonnell, J.R.1    Waagen, D.2
  • 21
    • 0000506972 scopus 로고    scopus 로고
    • Econometrics vs. ANN models in forecasting inflation
    • Moshiri, S. and Cameron, N. (2000) Econometrics vs. ANN models in forecasting inflation. Journal of Forecasting, 19, 201-217.
    • (2000) Journal of Forecasting , vol.19 , pp. 201-217
    • Moshiri, S.1    Cameron, N.2
  • 22
    • 0012131847 scopus 로고    scopus 로고
    • Static, dynamic and hybrid neural networks in forecasting
    • Moshiri S., Cameron, N. and Scuse, D. (1997) Static, dynamic and hybrid neural networks in forecasting. Computational Economics, 14, 219-235.
    • (1997) Computational Economics , vol.14 , pp. 219-235
    • Moshiri, S.1    Cameron, N.2    Scuse, D.3
  • 25
    • 0012127585 scopus 로고
    • Dynamic system identification using Elman and Jordan networks
    • Bulsari, A., ed., chap. 23
    • Pham, D. and Xing, L. (1995) Dynamic system identification using Elman and Jordan networks. In: Bulsari, A., ed., Neural Networks for Chemical Engineering, chap. 23, 572-591.
    • (1995) Neural Networks for Chemical Engineering , pp. 572-591
    • Pham, D.1    Xing, L.2
  • 27
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986a) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart, D.E. and McClelland, J.L., eds., chap. 8
    • Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986b) Learning Internal Representations by Error Propagation. In: Rumelhart, D.E. and McClelland, J.L., eds., Parallel Distributed Processing, 1, chap. 8.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • Saad, E.W., Prgkhorov, D.C. and Wunsch II, D.C. (1998) Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Trans. on Neural Networks, 9 (6), 1456-1470.
    • (1998) IEEE Trans. on Neural Networks , vol.9 , Issue.6 , pp. 1456-1470
    • Saad, E.W.1    Prgkhorov, D.C.2    Wunsch D.C. II3
  • 32
    • 4243914758 scopus 로고
    • Stock price prediction using neural networks: A project report
    • Schoneburg, E. (1990) Stock price prediction using neural networks: A project report. Neurocomputing, 27 17-27.
    • (1990) Neurocomputing , vol.2 , pp. 17-27
    • Schoneburg, E.1
  • 39
    • 0001242140 scopus 로고
    • Time series forecasting using backpropagation neural networks
    • Wong, F.S. (1991) Time series forecasting using backpropagation neural networks, Neurocomputing, 2, 147-159.
    • (1991) Neurocomputing , vol.2 , pp. 147-159
    • Wong, F.S.1
  • 40
    • 0033074333 scopus 로고    scopus 로고
    • Probabilistic neural networks in bankruptcy prediction
    • Yang, Z.R. (1999) Probabilistic neural networks in bankruptcy prediction. Journal of Business Research, 44, 67-74.
    • (1999) Journal of Business Research , vol.44 , pp. 67-74
    • Yang, Z.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.