메뉴 건너뛰기




Volumn 12, Issue 6, 2002, Pages 704-708

Novel proteases: Common themes and surprising features

Author keywords

[No Author keywords available]

Indexed keywords

CELL PROTEIN; PEPTIDE; PROTEIN; PROTEINASE;

EID: 0036909399     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-440X(02)00393-7     Document Type: Review
Times cited : (21)

References (39)
  • 2
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution
    • Lowe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science. 268:1995;533-539.
    • (1995) Science , vol.268 , pp. 533-539
    • Lowe, J.1    Stock, D.2    Jap, B.3    Zwickl, P.4    Baumeister, W.5    Huber, R.6
  • 4
    • 0030925223 scopus 로고    scopus 로고
    • Crystal structure of heat shock locus V (HslV) from Escherichia coli
    • Bochtler M., Ditzel L., Groll M., Huber R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci USA. 94:1997;6070-6074.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 6070-6074
    • Bochtler, M.1    Ditzel, L.2    Groll, M.3    Huber, R.4
  • 7
    • 0033681249 scopus 로고    scopus 로고
    • Crystal and solution structures of an HslUV protease-chaperone complex
    • This paper describes the structure of the HslUV complex, which serves as a prototype of the Clp/Hsp100 family. In the structure, HslU hexameric rings bind to the central double-hexameric ring of the HslV protease, with the I-domains pointing outwards. Putatively, the I-domains bind the substrates for degradation.
    • Sousa M.C., Trame C.B., Tsuruta H., Wilbanks S.M., Reddy V.S., McKay D.B. Crystal and solution structures of an HslUV protease-chaperone complex. Cell. 103:2000;633-643. This paper describes the structure of the HslUV complex, which serves as a prototype of the Clp/Hsp100 family. In the structure, HslU hexameric rings bind to the central double-hexameric ring of the HslV protease, with the I-domains pointing outwards. Putatively, the I-domains bind the substrates for degradation.
    • (2000) Cell , vol.103 , pp. 633-643
    • Sousa, M.C.1    Trame, C.B.2    Tsuruta, H.3    Wilbanks, S.M.4    Reddy, V.S.5    McKay, D.B.6
  • 9
    • 0036308646 scopus 로고    scopus 로고
    • Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: Corroboration of a proposed mechanism of allosteric activation of HslV by HslU
    • Sousa M.C., Kessler B.M., Overkleeft H.S., McKay D.B. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J Mol Biol. 318:2002;779-785.
    • (2002) J Mol Biol , vol.318 , pp. 779-785
    • Sousa, M.C.1    Kessler, B.M.2    Overkleeft, H.S.3    McKay, D.B.4
  • 10
    • 0037187588 scopus 로고    scopus 로고
    • Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine
    • This paper describes open and closed structures of DegP (HtrA), a multimeric complex that switches between chaperone and protease function depending on temperature. The authors suggest that the PDZ domains swing out and bind substrates for transfer to the catalytic sites, located in the cavity of the hexameric protease structure.
    • Krojer T., Garrido-Franco M., Huber R., Ehrmann M., Clausen T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature. 416:2002;455-459. This paper describes open and closed structures of DegP (HtrA), a multimeric complex that switches between chaperone and protease function depending on temperature. The authors suggest that the PDZ domains swing out and bind substrates for transfer to the catalytic sites, located in the cavity of the hexameric protease structure.
    • (2002) Nature , vol.416 , pp. 455-459
    • Krojer, T.1    Garrido-Franco, M.2    Huber, R.3    Ehrmann, M.4    Clausen, T.5
  • 11
  • 14
    • 0032567040 scopus 로고    scopus 로고
    • The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation
    • Tamura N., Lottspeich F., Baumeister W., Tamura T. The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. Cell. 95:1998;637-648.
    • (1998) Cell , vol.95 , pp. 637-648
    • Tamura, N.1    Lottspeich, F.2    Baumeister, W.3    Tamura, T.4
  • 15
    • 0035936157 scopus 로고    scopus 로고
    • Crystal structure of the tricorn protease reveals a protein disassembly line
    • This paper describes the structure of the 720 kDa tricorn protease, which degrades peptides produced by the proteasome further to dipeptides and tripeptides. The authors propose that substrates enter and products exit through the seven- and six-bladed β-propeller domains, respectively. Furthermore, they discuss a protein disassembly line, degrading proteins into single amino acid residues, formed by proteasomes, tricorn proteases and interacting factors F1, F2 and F3
    • Brandstetter H., Kim J.S., Groll M., Huber R. Crystal structure of the tricorn protease reveals a protein disassembly line. Nature. 414:2001;466-470. This paper describes the structure of the 720 kDa tricorn protease, which degrades peptides produced by the proteasome further to dipeptides and tripeptides. The authors propose that substrates enter and products exit through the seven- and six-bladed β-propeller domains, respectively. Furthermore, they discuss a protein disassembly line, degrading proteins into single amino acid residues, formed by proteasomes, tricorn proteases and interacting factors F1, F2 and F3.
    • (2001) Nature , vol.414 , pp. 466-470
    • Brandstetter, H.1    Kim, J.S.2    Groll, M.3    Huber, R.4
  • 16
    • 0034279642 scopus 로고    scopus 로고
    • Catalysis of serine oligopeptidases is controlled by a gating filter mechanism
    • Fulop V., Szeltner Z., Polgar L. Catalysis of serine oligopeptidases is controlled by a gating filter mechanism. EMBO Rep. 1:2000;277-281.
    • (2000) EMBO Rep , vol.1 , pp. 277-281
    • Fulop, V.1    Szeltner, Z.2    Polgar, L.3
  • 17
    • 0036205587 scopus 로고    scopus 로고
    • Mechanisms of caspase activation and inhibition during apoptosis
    • Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 9:2002;459-470.
    • (2002) Mol Cell , vol.9 , pp. 459-470
    • Shi, Y.1
  • 19
    • 0035831022 scopus 로고    scopus 로고
    • Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain
    • Huang Y., Park Y.C., Rich R.L., Segal D., Myszka D.G., Wu H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell. 104:2001;781-790.
    • (2001) Cell , vol.104 , pp. 781-790
    • Huang, Y.1    Park, Y.C.2    Rich, R.L.3    Segal, D.4    Myszka, D.G.5    Wu, H.6
  • 21
    • 0035798361 scopus 로고    scopus 로고
    • Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding
    • This paper describes the structures of unprocessed caspase-7 zymogen and processed active caspase-7. Together with known structures of inhibited caspase-7, it shows the structural changes that occur upon proteolytic activation of procaspase-7 needed to form a fully competent active site.
    • Chai J., Wu Q., Shiozaki E., Srinivasula S.M., Alnemri E.S., Shi Y. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell. 107:2001;399-407. This paper describes the structures of unprocessed caspase-7 zymogen and processed active caspase-7. Together with known structures of inhibited caspase-7, it shows the structural changes that occur upon proteolytic activation of procaspase-7 needed to form a fully competent active site.
    • (2001) Cell , vol.107 , pp. 399-407
    • Chai, J.1    Wu, Q.2    Shiozaki, E.3    Srinivasula, S.M.4    Alnemri, E.S.5    Shi, Y.6
  • 22
    • 0035909889 scopus 로고    scopus 로고
    • Structural basis for the activation of human procaspase-7
    • This paper describes the structure of unprocessed caspase-7 zymogen. The structure reveals the structural changes required to generate active caspase-7.
    • Riedl S.J., Fuentes-Prior P., Renatus M., Kairies N., Krapp S., Huber R., Salvesen G.S., Bode W. Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA. 98:2001;14790-14795. This paper describes the structure of unprocessed caspase-7 zymogen. The structure reveals the structural changes required to generate active caspase-7.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 14790-14795
    • Riedl, S.J.1    Fuentes-Prior, P.2    Renatus, M.3    Kairies, N.4    Krapp, S.5    Huber, R.6    Salvesen, G.S.7    Bode, W.8
  • 24
    • 0035932465 scopus 로고    scopus 로고
    • Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex
    • Xu G., Cirilli M., Huang Y., Rich R.L., Myszka D.G., Wu H. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature. 410:2001;494-497.
    • (2001) Nature , vol.410 , pp. 494-497
    • Xu, G.1    Cirilli, M.2    Huang, Y.3    Rich, R.L.4    Myszka, D.G.5    Wu, H.6
  • 25
    • 0036469280 scopus 로고    scopus 로고
    • The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex
    • This paper describes the structure of zymogen C1r together with two of its five preceding regulatory domains. The authors hypothesize that, based on the dimeric structure, mechanical stress due to binding of the C1 complex to its target may induce large structural rearrangements that bring the scissile loops into the active sites for auto-proteolytic activation.
    • Budayova-Spano M., Lacroix M., Thielens N.M., Arlaud G.J., Fontecilla-Camps J.C., Gaboriaud C. The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex. EMBO J. 21:2002;231-239. This paper describes the structure of zymogen C1r together with two of its five preceding regulatory domains. The authors hypothesize that, based on the dimeric structure, mechanical stress due to binding of the C1 complex to its target may induce large structural rearrangements that bring the scissile loops into the active sites for auto-proteolytic activation.
    • (2002) EMBO J , vol.21 , pp. 231-239
    • Budayova-Spano, M.1    Lacroix, M.2    Thielens, N.M.3    Arlaud, G.J.4    Fontecilla-Camps, J.C.5    Gaboriaud, C.6
  • 26
    • 0034678903 scopus 로고    scopus 로고
    • Crystal structure of the catalytic domain of human complement c1s: A serine protease with a handle
    • Gaboriaud C., Rossi V., Bally I., Arlaud G.J., Fontecilla-Camps J.C. Crystal structure of the catalytic domain of human complement c1s: a serine protease with a handle. EMBO J. 19:2000;1755-1765.
    • (2000) EMBO J , vol.19 , pp. 1755-1765
    • Gaboriaud, C.1    Rossi, V.2    Bally, I.3    Arlaud, G.J.4    Fontecilla-Camps, J.C.5
  • 27
    • 0033557766 scopus 로고    scopus 로고
    • Structural basis of profactor D activation: From a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D
    • Jing H., Macon K.J., Moore D., DeLucas L.J., Volanakis J.E., Narayana S.V. Structural basis of profactor D activation: from a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D. EMBO J. 18:1999;804-814.
    • (1999) EMBO J , vol.18 , pp. 804-814
    • Jing, H.1    Macon, K.J.2    Moore, D.3    DeLucas, L.J.4    Volanakis, J.E.5    Narayana, S.V.6
  • 28
    • 0034677208 scopus 로고    scopus 로고
    • New structural motifs on the chymotrypsin fold and their potential roles in complement factor B
    • Jing H., Xu Y., Carson M., Moore D., Macon K.J., Volanakis J.E., Narayana S.V. New structural motifs on the chymotrypsin fold and their potential roles in complement factor B. EMBO J. 19:2000;164-173.
    • (2000) EMBO J , vol.19 , pp. 164-173
    • Jing, H.1    Xu, Y.2    Carson, M.3    Moore, D.4    Macon, K.J.5    Volanakis, J.E.6    Narayana, S.V.7
  • 29
    • 0034687422 scopus 로고    scopus 로고
    • Structure of a serpin-protease complex shows inhibition by deformation
    • Huntington J.A., Read R.J., Carrell R.W. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 407:2000;923-926.
    • (2000) Nature , vol.407 , pp. 923-926
    • Huntington, J.A.1    Read, R.J.2    Carrell, R.W.3
  • 30
    • 0035829518 scopus 로고    scopus 로고
    • Crystal structure of the anthrax lethal factor
    • This paper describes the crystal structure of anthrax lethal factor from Bacillus anthracis. The structure reveals a long binding groove specific for the N-terminal tail of members of the MAPK kinase family. It provides structural data for the design of drugs against the acute effects of anthrax infection.
    • Pannifer A.D., Wong T.Y., Schwarzenbacher R., Renatus M., Petosa C., Bienkowska J., Lacy D.B., Collier R.J., Park S., Leppla S.H., et al. Crystal structure of the anthrax lethal factor. Nature. 414:2001;229-233. This paper describes the crystal structure of anthrax lethal factor from Bacillus anthracis. The structure reveals a long binding groove specific for the N-terminal tail of members of the MAPK kinase family. It provides structural data for the design of drugs against the acute effects of anthrax infection.
    • (2001) Nature , vol.414 , pp. 229-233
    • Pannifer, A.D.1    Wong, T.Y.2    Schwarzenbacher, R.3    Renatus, M.4    Petosa, C.5    Bienkowska, J.6    Lacy, D.B.7    Collier, R.J.8    Park, S.9    Leppla, S.H.10
  • 32
    • 0034681296 scopus 로고    scopus 로고
    • Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon
    • Oefner C., D'Arcy A., Hennig M., Winkler F.K., Dale G.E. Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J Mol Biol. 296:2000;341-349.
    • (2000) J Mol Biol , vol.296 , pp. 341-349
    • Oefner, C.1    D'Arcy, A.2    Hennig, M.3    Winkler, F.K.4    Dale, G.E.5
  • 33
    • 0034058370 scopus 로고    scopus 로고
    • Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease
    • Kagawa T.F., Cooney J.C., Baker H.M., McSweeney S., Liu M., Gubba S., Musser J.M., Baker E.N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Proc Natl Acad Sci USA. 97:2000;2235-2240.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 2235-2240
    • Kagawa, T.F.1    Cooney, J.C.2    Baker, H.M.3    McSweeney, S.4    Liu, M.5    Gubba, S.6    Musser, J.M.7    Baker, E.N.8
  • 36
    • 0035903650 scopus 로고    scopus 로고
    • Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site
    • This paper describes the first structure of a membrane protease, OmpT, from the outer membrane of E. coli. The structure shows a β-barrel fold, typical of outer membrane proteins, with the catalytic site located extracellularly in a groove formed by the extended barrel structure. The catalytic site reveals a novel arrangement of catalytic residues involving one histidine and three aspartate residues.
    • Vandeputte-Rutten L., Kramer R.A., Kroon J., Dekker N., Egmond M.R., Gros P. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J. 20:2001;5033-5039. This paper describes the first structure of a membrane protease, OmpT, from the outer membrane of E. coli. The structure shows a β-barrel fold, typical of outer membrane proteins, with the catalytic site located extracellularly in a groove formed by the extended barrel structure. The catalytic site reveals a novel arrangement of catalytic residues involving one histidine and three aspartate residues.
    • (2001) EMBO J , vol.20 , pp. 5033-5039
    • Vandeputte-Rutten, L.1    Kramer, R.A.2    Kroon, J.3    Dekker, N.4    Egmond, M.R.5    Gros, P.6
  • 38
    • 0035929160 scopus 로고    scopus 로고
    • Identification of essential acidic residues of outer membrane protease OmpT supports a novel active site
    • Kramer R.A., Vandeputte-Rutten L., de Roon G.J., Gros P., Dekker N., Egmond M.R. Identification of essential acidic residues of outer membrane protease OmpT supports a novel active site. FEBS Lett. 505:2001;426-430.
    • (2001) FEBS Lett , vol.505 , pp. 426-430
    • Kramer, R.A.1    Vandeputte-Rutten, L.2    De Roon, G.J.3    Gros, P.4    Dekker, N.5    Egmond, M.R.6
  • 39
    • 0037150534 scopus 로고    scopus 로고
    • Biochemistry. Intramembrane proteases-mixing oil and water
    • Wolfe M.S., Selkoe D.J. Biochemistry. Intramembrane proteases-mixing oil and water. Science. 296:2002;2156-2157.
    • (2002) Science , vol.296 , pp. 2156-2157
    • Wolfe, M.S.1    Selkoe, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.