메뉴 건너뛰기




Volumn 44, Issue 12, 2002, Pages 1567-1579

Erratum to: "Notes on Triple I method of fuzzy reasoning" [Comput. Math. Appl. 44 (2002) 1567-1579] (DOI:10.1016/S0898-1221(02)00279-1);Triple I method of fuzzy reasoning

Author keywords

Fuzzy reasoning; Triple I method; Zadeh's implication operator; (u, v) triple I method; Zadeh's implication

Indexed keywords

LINEAR SYSTEMS; MATHEMATICAL MODELS; SET THEORY; THEOREM PROVING;

EID: 0036904345     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2009.04.023     Document Type: Erratum
Times cited : (59)

References (12)
  • 1
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its applications to approximate reasoning I
    • L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning, I, Inform. Sci. 8, 199-249, (1975).
    • (1975) Inform. Sci. , vol.8 , pp. 199-249
    • Zadeh, L.A.1
  • 2
    • 0016459349 scopus 로고
    • The concept of a linguistic variable and its applications to approximate reasoning II
    • L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning, II, Inform. Sci. 8, 301-357, (1975).
    • (1975) Inform. Sci. , vol.8 , pp. 301-357
    • Zadeh, L.A.1
  • 3
    • 0016631726 scopus 로고
    • The concept of a linguistic variable and its applications to approximate reasoning, III
    • L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning, III, Inform. Sci. 9, 43-93, (1975).
    • (1975) Inform. Sci. , vol.9 , pp. 43-93
    • Zadeh, L.A.1
  • 4
    • 0012041480 scopus 로고
    • Can approximate reasoning be consistent?
    • J. Buckley and Y. Hayashi, Can approximate reasoning be consistent?, Fuzzy Sets and Systems 65, 13-18, (1994).
    • (1994) Fuzzy Sets and Systems , vol.65 , pp. 13-18
    • Buckley, J.1    Hayashi, Y.2
  • 5
    • 44949277903 scopus 로고
    • Fuzzy sets in approximate reasoning, Part 1: Inference with possibility distributions
    • D. Dubois and H. Prade, Fuzzy sets in approximate reasoning, Part 1: Inference with possibility distributions, Fuzzy Sets and Systems 40, 143-202, (1991).
    • (1991) Fuzzy Sets and Systems , vol.40 , pp. 143-202
    • Dubois, D.1    Prade, H.2
  • 6
    • 44949276212 scopus 로고
    • Fuzzy sets in approximate reasoning, Part 2: Logic approaches
    • D. Dubois, J. Lang and H. Prade, Fuzzy sets in approximate reasoning, Part 2: Logic approaches, Fuzzy Sets and Systems 40, 203-244, (1991).
    • (1991) Fuzzy Sets and Systems , vol.40 , pp. 203-244
    • Dubois, D.1    Lang, J.2    Prade, H.3
  • 7
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic systems
    • E.H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic systems, IEEE Trans. Comput. 26, 1182-1191, (1977).
    • (1977) IEEE Trans. Comput. , vol.26 , pp. 1182-1191
    • Mamdani, E.H.1
  • 9
    • 0003089763 scopus 로고
    • Fuzzy reasoning and fuzzy relational equations
    • W.M. Wu, Fuzzy reasoning and fuzzy relational equations, Fuzzy Sets and Systems 20, 67-78, (1986).
    • (1986) Fuzzy Sets and Systems , vol.20 , pp. 67-78
    • Wu, W.M.1
  • 11
    • 0013153201 scopus 로고    scopus 로고
    • The triple I method with total inference rules of fuzzy reasoning
    • G.J. Wang, The triple I method with total inference rules of fuzzy reasoning, Science in China, E 29, 43-53, (1999).
    • (1999) Science in China, E , vol.29 , pp. 43-53
    • Wang, G.J.1
  • 12
    • 0000857996 scopus 로고    scopus 로고
    • The inserting value mechanism of fuzzy control
    • H.X. Li, The inserting value mechanism of fuzzy control, Science of China, E 28, 259-267, (1998).
    • (1998) Science of China, E , vol.28 , pp. 259-267
    • Li, H.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.