-
1
-
-
0003059620
-
New examples in smooth ergodic theory. Ergodic diffeomorphisms
-
D. Anosov and A. Katok. New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trans. Moscow Math. Soc. 23 (1970), 1-35.
-
(1970)
Trans. Moscow Math. Soc.
, vol.23
, pp. 1-35
-
-
Anosov, D.1
Katok, A.2
-
2
-
-
0033416835
-
Dimension and product structure of hyperbolic measures
-
L. Barreira, Ya. Pesin and J. Schmeling. Dimension and product structure of hyperbolic measures. Ann. Math. 149(3) (1999), 755-783.
-
(1999)
Ann. Math.
, vol.149
, Issue.3
, pp. 755-783
-
-
Barreira, L.1
Pesin, Y.2
Schmeling, J.3
-
3
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
J.P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (1985), 617-656.
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 617-656
-
-
Eckmann, J.P.1
Ruelle, D.2
-
5
-
-
51249187032
-
Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations
-
M.-R. Herman. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Inst. Haates Études Sci. Publ. Math. 49 (1979), 5-233.
-
(1979)
Inst. Haates Études Sci. Publ. Math.
, vol.49
, pp. 5-233
-
-
Herman, M.-R.1
-
6
-
-
0003195540
-
Introduction to the Modern theory of dynamical systems
-
Cambridge University Press, Cambridge
-
A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, vol. 54). Cambridge University Press, Cambridge, 1995.
-
(1995)
Encyclopedia of Mathematics and its Applications
, vol.54
-
-
Katok, A.1
Hasselblatt, B.2
-
7
-
-
0011829324
-
Dimension of invariant measures for maps with exponent zero
-
F. Ledrappier and M. Misiurewicz. Dimension of invariant measures for maps with exponent zero. Ergod. Th. & Dynam. Sys. 5 (1985), 595-610.
-
(1985)
Ergod. Th. & Dynam. Sys.
, vol.5
, pp. 595-610
-
-
Ledrappier, F.1
Misiurewicz, M.2
-
9
-
-
0030353353
-
On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture
-
Ya. Pesin and H. Weiss. On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture. Commun. Math. Phys. 182(1) (1996), 105-153.
-
(1996)
Commun. Math. Phys.
, vol.182
, Issue.1
, pp. 105-153
-
-
Pesin, Y.1
Weiss, H.2
|