-
2
-
-
0001885428
-
Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals
-
U. Clarenz, Heiko von der Mosel: Compactness Theorems and an Isoperimetric Inequality for Critical Points of Elliptic Parametric Functionals, Calc. Var. 50, 2000.
-
(2000)
Calc. Var.
, vol.50
-
-
Clarenz, U.1
Von der Mosel, H.2
-
3
-
-
51249179473
-
Maximum principles and nonexistence results for minimal submanifolds
-
U. Dierkes: Maximum principles and nonexistence results for minimal submanifolds. Manuscr. Math. 69, 203-218, 1990.
-
(1990)
Manuscr. Math.
, vol.69
, pp. 203-218
-
-
Dierkes, U.1
-
4
-
-
0003372936
-
Geometric measure theory
-
Berlin, Heidelberg, New York: Springer
-
H. Federer: Geometric Measure Theory. Grundlehren math. Wiss. 153. Berlin, Heidelberg, New York: Springer, 1969.
-
(1969)
Grundlehren Math. Wiss.
, vol.153
-
-
Federer, H.1
-
5
-
-
0003304216
-
Elliptic partial differential equations of second order
-
Berlin, Heidelberg, New York:Springer. 2nd Edn.
-
D. Gilbarg, N.S. Trudinger: Elliptic partial differential equations of second order. Grundlehren math. Wiss. 224. Berlin, Heidelberg, New York:Springer, 1977. 2nd Edn. 1983.
-
(1977)
Grundlehren Math. Wiss.
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
6
-
-
0039097648
-
Maximum principles for minimal surfaces and for surfaces of continuous mean curvature
-
S. Hildebrandt: Maximum principles for minimal surfaces and for surfaces of continuous mean curvature. Math. Z. 128, 253-269, 1972.
-
(1972)
Math. Z.
, vol.128
, pp. 253-269
-
-
Hildebrandt, S.1
-
7
-
-
0013030571
-
-
Dissertation, Bonn
-
3. Dissertation, Bonn, 1993.
-
(1993)
3
-
-
Räwer, K.1
-
8
-
-
0001841087
-
Lectures on geometric measure theory
-
Australian National University, Canberra, Australia (publ. 1984)
-
L. Simon: Lectures on geometric measure theory. Proc. Centre Math. Analysis, Australian National University, Canberra, Australia 3, 1983 (publ. 1984).
-
(1983)
Proc. Centre Math. Analysis
, vol.3
-
-
Simon, L.1
-
9
-
-
0009914838
-
The space of m-dimensional surfaces that are stationary for a parametric elliptic functional
-
B. White: The space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional. Indiana Univ. Math. J. 36(3), 1987.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 3
-
-
White, B.1
|