메뉴 건너뛰기




Volumn 56, Issue 4, 2002, Pages 434-453

Wavelet thresholding for some classes of non-gaussian noise

Author keywords

Cauchy distribution; Denoising; Exponential power distributions; MAP; Non Gaussian noises; Regularization; Wavelets

Indexed keywords


EID: 0036873311     PISSN: 00390402     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9574.00211     Document Type: Article
Times cited : (55)

References (44)
  • 3
    • 0000938486 scopus 로고    scopus 로고
    • Model selection using wavelet decomposition and applications
    • ANTONIADIS, A., I. GIJBELS and G. GRÉGOIRE (1997), Model selection using wavelet decomposition and applications, Biometrika 84, 751-763.
    • (1997) Biometrika , vol.84 , pp. 751-763
    • Antoniadis, A.1    Gijbels, I.2    Grégoire, G.3
  • 6
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage
    • CHAMBOLLE, A., R. A. DEVORE, N.-Y. LEE and B. J. LUCIER (1998), Nonlinear wavelet image processing: variational problems, compression and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing 7, 319-335.
    • (1998) IEEE Transactions on Image Processing , vol.7 , pp. 319-335
    • Chambolle, A.1    Devore, R.A.2    Lee, N.-Y.3    Lucier, B.J.4
  • 8
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • CLYDE, M., G. PARMIGIANI and B. VIDAKOVIC (1998), Multiple shrinkage and subset selection in wavelets, Biometrika 85, 391-401.
    • (1998) Biometrika , vol.85 , pp. 391-401
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 9
    • 0002001578 scopus 로고
    • Translation-invariant de-noising
    • ANTONIADIS, A. and G. OPPENHEIM, (eds.), Lecture Notes in Statistics, Springer Verlag
    • COIFMAN, R. and D. DONOHO (1995), Translation-invariant de-noising: in ANTONIADIS, A. and G. OPPENHEIM, (eds.), Wavelets and statistics. Lecture Notes in Statistics, Springer Verlag.
    • (1995) Wavelets and Statistics
    • Coifman, R.1    Donoho, D.2
  • 10
    • 0004268248 scopus 로고    scopus 로고
    • Report No. S98-15, Department of Statistics, The University of New South Wales
    • DECHEVSKY, L. T. and S. I. PENEV (1998), On penalized wavelet estimation, Report No. S98-15, Department of Statistics, The University of New South Wales.
    • (1998) On Penalized Wavelet Estimation
    • Dechevsky, L.T.1    Penev, S.I.2
  • 13
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • DONOHO, D. L. and I. M. JOHNSTONE (1994), Ideal spatial adaptation by wavelet shrinkage, Biometrika 81, 425-455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 15
    • 0032334093 scopus 로고    scopus 로고
    • Minimax estimation via wavelet shrinkage
    • DONOHO, D. L. and I. M. JOHNSTONE (1998), Minimax estimation via wavelet shrinkage, Annals of Statistics 26, 879-921.
    • (1998) Annals of Statistics , vol.26 , pp. 879-921
    • Donoho, D.L.1    Johnstone, I.M.2
  • 18
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • FRANK, I. and J. H. FRIEDMAN (1993), A statistical view of some chemometrics regression tools, Technometrics 35, 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, J.H.2
  • 20
    • 0031526204 scopus 로고    scopus 로고
    • Approaches to Bayesian variable selection
    • GEORGE, E. I. and R. MCCULLOGH (1997), Approaches to Bayesian variable selection, Statistica Sinica 7, 339-373.
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCullogh, R.2
  • 22
    • 0002382034 scopus 로고    scopus 로고
    • Wavelet estimators: Adapting to unknown smoothness
    • JÙDITSKY, A. (1997), Wavelet estimators: adapting to unknown smoothness, Mathematical Methods of Statistics 6, 1-25.
    • (1997) Mathematical Methods of Statistics , vol.6 , pp. 1-25
    • Jùditsky, A.1
  • 23
    • 0032628798 scopus 로고    scopus 로고
    • Minimax description length for signal denoising and optimized respresentation
    • KRIM, H. and I.-C. SCHICK (1999), Minimax description length for signal denoising and optimized respresentation, IEEE Transactions on Information Theory 45, 898-908.
    • (1999) IEEE Transactions on Information Theory , vol.45 , pp. 898-908
    • Krim, H.1    Schick, I.-C.2
  • 26
    • 0034831995 scopus 로고    scopus 로고
    • Bayesian wavelet denoising: Besov priors and non-Gaussian noises
    • LEPORINI, D. and J.-C. PESQUET (2001), Bayesian wavelet denoising: Besov priors and non-Gaussian noises, Signal Processing 81, 55-67.
    • (2001) Signal Processing , vol.81 , pp. 55-67
    • Leporini, D.1    Pesquet, J.-C.2
  • 28
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • MALLAT, S. (1989b), A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-11, 674-693.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-11 , pp. 674-693
    • Mallat, S.1
  • 29
    • 0000146939 scopus 로고
    • Choice of the threshold parameter in wavelet function estimation
    • A. ANTONIADIS and G. OPPENHEIM (eds.), Lecture Notes in Statistics, Springer Verlag
    • NASON, G. P. (1995), Choice of the threshold parameter in wavelet function estimation, in: A. ANTONIADIS and G. OPPENHEIM (eds.), Wavelets and statistics, 261-280, Lecture Notes in Statistics, Springer Verlag.
    • (1995) Wavelets and Statistics , pp. 261-280
    • Nason, G.P.1
  • 31
    • 0001259658 scopus 로고
    • The stationary wavelet transform and some statistical applications
    • A. ANTONIADIS and G. OPPENHEIM (eds.), Lecture Notes in Statistics, Springer Verlag
    • NASON, G. P. and B. W. SILVERMAN (1995), The stationary wavelet transform and some statistical applications, in: A. ANTONIADIS and G. OPPENHEIM (eds.), Wavelets and statistics, 281-299. Lecture Notes in Statistics, Springer Verlag.
    • (1995) Wavelets and Statistics , pp. 281-299
    • Nason, G.P.1    Silverman, B.W.2
  • 32
    • 0000099541 scopus 로고
    • Wavelet thresholding: Beyond the Gaussian i.i.d situation
    • A. ANTONIADIS and G. OPPENHEIM (eds.), Lecture Notes in Statistics, Springer Verlag
    • NEUMANN, M. H. and R. VON SACHS (1995), Wavelet thresholding: beyond the Gaussian i.i.d situation, in: A. ANTONIADIS and G. OPPENHEIM (eds.), Wavelets and statistics, Lecture Notes in Statistics, Springer Verlag, 301-330.
    • (1995) Wavelets and Statistics , pp. 301-330
    • Neumann, M.H.1    Von Sachs, R.2
  • 33
    • 0001252559 scopus 로고
    • Inference for linear models with radially decomposable error
    • IMS Lecture notes
    • NG, K. W. and D. A. S. FRASER (1994), Inference for linear models with radially decomposable error in: Multivariate analysis and its applications, 359-367 IMS Lecture notes, Vol 24.
    • (1994) Multivariate Analysis and its Applications , vol.24 , pp. 359-367
    • Ng, K.W.1    Fraser, D.A.S.2
  • 36
    • 21344466471 scopus 로고    scopus 로고
    • Change-point approach to data analytic wavelet thresholding
    • OGDEN, R. T. and E. PARZEN (1996a), Change-point approach to data analytic wavelet thresholding, Statistics and Computing, 63, 93-99.
    • (1996) Statistics and Computing , vol.63 , pp. 93-99
    • Ogden, R.T.1    Parzen, E.2
  • 37
    • 0030160662 scopus 로고    scopus 로고
    • Data dependent wavelet thresholding in nonparametric regression with change-point applications
    • OGDEN, R. T. and E. PARZEN (1996b), Data dependent wavelet thresholding in nonparametric regression with change-point applications, Computational Statistics 22, 53-70.
    • (1996) Computational Statistics , vol.22 , pp. 53-70
    • Ogden, R.T.1    Parzen, E.2
  • 38
    • 0033430776 scopus 로고    scopus 로고
    • A Bayesian decision theoretic approach to wavelet thresholding
    • RUGGERI, F. and B. VIDAKOVIC (1999), A Bayesian decision theoretic approach to wavelet thresholding, Statistica Sinica 9, 183-197.
    • (1999) Statistica Sinica , vol.9 , pp. 183-197
    • Ruggeri, F.1    Vidakovic, B.2
  • 39
    • 0000446730 scopus 로고    scopus 로고
    • Bayesian denoising of visual images in the wavelet domain
    • P. MULLER and B. VIDAKOVIC (eds.), Lecture Notes in Statistics, Springer Verlag
    • SIMONCELLI, E. (1999), Bayesian denoising of visual images in the wavelet domain, in: P. MULLER and B. VIDAKOVIC (eds.), Bayesian inference in wavelet-based models, Lecture Notes in Statistics, Springer Verlag.
    • (1999) Bayesian Inference in Wavelet-based Models
    • Simoncelli, E.1
  • 41
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • SMITH, A. and G. ROBERTS (1993), Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, Journal of the Royal Statistical Society Series B 55, 3-23.
    • (1993) Journal of the Royal Statistical Society Series B , vol.55 , pp. 3-23
    • Smith, A.1    Roberts, G.2
  • 43
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • TIERNEY, L. (1994), Markov chains for exploring posterior distributions, Annals of Statistics 227 1701-1762.
    • (1994) Annals of Statistics , vol.227 , pp. 1701-1762
    • Tierney, L.1
  • 44
    • 0032349461 scopus 로고    scopus 로고
    • Nonlinear wavelet shrinkage with Bayes rules and Bayes factors
    • VIDAKOVIC, B. (1998), Nonlinear wavelet shrinkage with Bayes rules and Bayes factors, Journal of the American Statistical Association 93, 173-179.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 173-179
    • Vidakovic, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.