-
5
-
-
0033208927
-
Exact solutions for (2 + 1)-dimensional burgers equations
-
Sirendaoreji, Exact solutions for (2 + 1)-dimensional Burgers equations, J. Phys. A 32, 6897, (1999).
-
(1999)
J. Phys. A
, vol.32
, pp. 6897
-
-
Sirendaoreji1
-
6
-
-
0031069499
-
Generalized tanh method with symbolic computation and generalized shallow water wave equation
-
Y. Gao and B. Tian, Generalized tanh method with symbolic computation and generalized shallow water wave equation, Computers Math. Applic. 33 (4), 115-118, (1997).
-
(1997)
Computers Math. Applic.
, vol.33
, Issue.4
, pp. 115-118
-
-
Gao, Y.1
Tian, B.2
-
7
-
-
0000000936
-
New family of exact soliton to the integrable dispersive long wave equation
-
B. Tian and Y. Gao, New family of exact soliton to the integrable dispersive long wave equation, J. Phys. A 29, 2895, (1996).
-
(1996)
J. Phys. A
, vol.29
, pp. 2895
-
-
Tian, B.1
Gao, Y.2
-
8
-
-
0001320071
-
On a new algorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics
-
Z.Y. Yan and H.Q. Zhang, On a new algorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics, Appl. Math. Mech. 20, 385, (2000).
-
(2000)
Appl. Math. Mech.
, vol.20
, pp. 385
-
-
Yan, Z.Y.1
Zhang, H.Q.2
-
9
-
-
0034159621
-
New solitonic solutions to (3 + 1)-dimensional Jimbo-Miwa equation
-
W. Hong and K. Oh, New solitonic solutions to (3 + 1)-dimensional Jimbo-Miwa equation, Computers Math. Applic. 39 (5/6), 29-31, (2000).
-
(2000)
Computers Math. Applic.
, vol.39
, Issue.5-6
, pp. 29-31
-
-
Hong, W.1
Oh, K.2
-
10
-
-
51649182617
-
Nonlinear evolution equation solvable by the inverse spectral transformation I
-
F. Calogero and A. Degasperis, Nonlinear evolution equation solvable by the inverse spectral transformation I, Nuovo Cimento B 32, 201, (1976).
-
(1976)
Nuovo Cimento B
, vol.32
, pp. 201
-
-
Calogero, F.1
Degasperis, A.2
-
11
-
-
0002001745
-
Overturning solitonic in two-dimensional integrable equations
-
O. Bogoyavlenskii, Overturning solitonic in two-dimensional integrable equations, Usp. Mat. Nauk. 45, 17, (1990).
-
(1990)
Usp. Mat. Nauk.
, vol.45
, pp. 17
-
-
Bogoyavlenskii, O.1
-
12
-
-
0001066844
-
Two topics of the integrable soliton equation
-
Y. Li, Two topics of the integrable soliton equation, T. M. Ψ 99, 441, (1994).
-
(1994)
T. M. Ψ
, vol.99
, pp. 441
-
-
Li, Y.1
-
13
-
-
0003003560
-
Remarks on the breaking soliton equations
-
Y. Li, Remarks on the breaking soliton equations, Int. J. Mod. Phys. A (Proc. Suppl.) 3, 523, (1993).
-
(1993)
Int. J. Mod. Phys. A (Proc. Suppl.)
, vol.3
, pp. 523
-
-
Li, Y.1
-
14
-
-
0001952069
-
New family of overturning soliton solutions for a typical breaking soliton equation
-
Y. Gao and B. Tian, New family of overturning soliton solutions for a typical breaking soliton equation, Computers Math. Applic. 30 (12), 97-100, (1995).
-
(1995)
Computers Math. Applic.
, vol.30
, Issue.12
, pp. 97-100
-
-
Gao, Y.1
Tian, B.2
-
15
-
-
35949040541
-
Exact solution of KDV equation for multiple collision of solitons
-
R. Hirota, Exact solution of KDV equation for multiple collision of solitons, Phys. Rev. Lett. 27, 1192, (1971).
-
(1971)
Phys. Rev. Lett.
, vol.27
, pp. 1192
-
-
Hirota, R.1
-
16
-
-
0001870614
-
The nonclassical method is more general than the direct method for symmetry reductions
-
M. Nucci and P. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. Phys. Lett. A 164, 49, (1992).
-
(1992)
Phys. Lett. A
, vol.164
, pp. 49
-
-
Nucci, M.1
Clarkson, P.2
-
17
-
-
30244524644
-
Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics
-
M.L. Wang and Z.B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216, 67, (1996).
-
(1996)
Phys. Lett. A
, vol.216
, pp. 67
-
-
Wang, M.L.1
Li, Z.B.2
|