메뉴 건너뛰기




Volumn 44, Issue 10-11, 2002, Pages 1439-1444

Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation

Author keywords

Breaking soliton equation; Exact solution; Nonlinear evolution equation; Soliton like solution; Symbolic computation

Indexed keywords

ALGEBRA; NONLINEAR EQUATIONS; SOLITONS; WAVE EQUATIONS;

EID: 0036859569     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0898-1221(02)00268-7     Document Type: Article
Times cited : (43)

References (17)
  • 5
    • 0033208927 scopus 로고    scopus 로고
    • Exact solutions for (2 + 1)-dimensional burgers equations
    • Sirendaoreji, Exact solutions for (2 + 1)-dimensional Burgers equations, J. Phys. A 32, 6897, (1999).
    • (1999) J. Phys. A , vol.32 , pp. 6897
    • Sirendaoreji1
  • 6
    • 0031069499 scopus 로고    scopus 로고
    • Generalized tanh method with symbolic computation and generalized shallow water wave equation
    • Y. Gao and B. Tian, Generalized tanh method with symbolic computation and generalized shallow water wave equation, Computers Math. Applic. 33 (4), 115-118, (1997).
    • (1997) Computers Math. Applic. , vol.33 , Issue.4 , pp. 115-118
    • Gao, Y.1    Tian, B.2
  • 7
    • 0000000936 scopus 로고    scopus 로고
    • New family of exact soliton to the integrable dispersive long wave equation
    • B. Tian and Y. Gao, New family of exact soliton to the integrable dispersive long wave equation, J. Phys. A 29, 2895, (1996).
    • (1996) J. Phys. A , vol.29 , pp. 2895
    • Tian, B.1    Gao, Y.2
  • 8
    • 0001320071 scopus 로고    scopus 로고
    • On a new algorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics
    • Z.Y. Yan and H.Q. Zhang, On a new algorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics, Appl. Math. Mech. 20, 385, (2000).
    • (2000) Appl. Math. Mech. , vol.20 , pp. 385
    • Yan, Z.Y.1    Zhang, H.Q.2
  • 9
    • 0034159621 scopus 로고    scopus 로고
    • New solitonic solutions to (3 + 1)-dimensional Jimbo-Miwa equation
    • W. Hong and K. Oh, New solitonic solutions to (3 + 1)-dimensional Jimbo-Miwa equation, Computers Math. Applic. 39 (5/6), 29-31, (2000).
    • (2000) Computers Math. Applic. , vol.39 , Issue.5-6 , pp. 29-31
    • Hong, W.1    Oh, K.2
  • 10
    • 51649182617 scopus 로고
    • Nonlinear evolution equation solvable by the inverse spectral transformation I
    • F. Calogero and A. Degasperis, Nonlinear evolution equation solvable by the inverse spectral transformation I, Nuovo Cimento B 32, 201, (1976).
    • (1976) Nuovo Cimento B , vol.32 , pp. 201
    • Calogero, F.1    Degasperis, A.2
  • 11
    • 0002001745 scopus 로고
    • Overturning solitonic in two-dimensional integrable equations
    • O. Bogoyavlenskii, Overturning solitonic in two-dimensional integrable equations, Usp. Mat. Nauk. 45, 17, (1990).
    • (1990) Usp. Mat. Nauk. , vol.45 , pp. 17
    • Bogoyavlenskii, O.1
  • 12
    • 0001066844 scopus 로고
    • Two topics of the integrable soliton equation
    • Y. Li, Two topics of the integrable soliton equation, T. M. Ψ 99, 441, (1994).
    • (1994) T. M. Ψ , vol.99 , pp. 441
    • Li, Y.1
  • 13
    • 0003003560 scopus 로고
    • Remarks on the breaking soliton equations
    • Y. Li, Remarks on the breaking soliton equations, Int. J. Mod. Phys. A (Proc. Suppl.) 3, 523, (1993).
    • (1993) Int. J. Mod. Phys. A (Proc. Suppl.) , vol.3 , pp. 523
    • Li, Y.1
  • 14
    • 0001952069 scopus 로고
    • New family of overturning soliton solutions for a typical breaking soliton equation
    • Y. Gao and B. Tian, New family of overturning soliton solutions for a typical breaking soliton equation, Computers Math. Applic. 30 (12), 97-100, (1995).
    • (1995) Computers Math. Applic. , vol.30 , Issue.12 , pp. 97-100
    • Gao, Y.1    Tian, B.2
  • 15
    • 35949040541 scopus 로고
    • Exact solution of KDV equation for multiple collision of solitons
    • R. Hirota, Exact solution of KDV equation for multiple collision of solitons, Phys. Rev. Lett. 27, 1192, (1971).
    • (1971) Phys. Rev. Lett. , vol.27 , pp. 1192
    • Hirota, R.1
  • 16
    • 0001870614 scopus 로고
    • The nonclassical method is more general than the direct method for symmetry reductions
    • M. Nucci and P. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. Phys. Lett. A 164, 49, (1992).
    • (1992) Phys. Lett. A , vol.164 , pp. 49
    • Nucci, M.1    Clarkson, P.2
  • 17
    • 30244524644 scopus 로고    scopus 로고
    • Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics
    • M.L. Wang and Z.B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216, 67, (1996).
    • (1996) Phys. Lett. A , vol.216 , pp. 67
    • Wang, M.L.1    Li, Z.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.