-
1
-
-
0003568098
-
-
Springer-Verlag, New York
-
K. Alligood, T. Sauer, and J. Yorke, Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1997.
-
(1997)
Chaos: An Introduction to Dynamical Systems
-
-
Alligood, K.1
Sauer, T.2
Yorke, J.3
-
2
-
-
0001743171
-
On Devaney's definition of chaos
-
J. Banks, J. Brooks, G. Cairns, G. Davis, and D. Stacey, On Devaney's definition of chaos, Amen. Math. Monthly 99 (1992) 332-334.
-
(1992)
Amen. Math. Monthly
, vol.99
, pp. 332-334
-
-
Banks, J.1
Brooks, J.2
Cairns, G.3
Davis, G.4
Stacey, D.5
-
3
-
-
0002562983
-
Dynamics in one dimension
-
Springer-Verlag, New York
-
L. Block and W. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, New York, 1992.
-
(1992)
Lecture Notes in Mathematics
, vol.1513
-
-
Block, L.1
Coppel, W.2
-
4
-
-
84967712810
-
Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval
-
L. Block and E. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc. 300 (1987) 297-306.
-
(1987)
Trans. Amer. Math. Soc.
, vol.300
, pp. 297-306
-
-
Block, L.1
Coven, E.2
-
5
-
-
0003509599
-
-
Addison-Wesley, Redwood City, CA
-
R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, Redwood City, CA, 1989.
-
(1989)
An Introduction to Chaotic Dynamical Systems, 2nd ed.
-
-
Devaney, R.1
-
6
-
-
0000100336
-
Period three implies chaos
-
T. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975) 985-992.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.1
Yorke, J.2
-
7
-
-
0031484982
-
Remarks on sharkovsky's theorem
-
M. Misiurewicz, Remarks on Sharkovsky's theorem, Amer. Math. Monthly 104 (1997) 864-867.
-
(1997)
Amer. Math. Monthly
, vol.104
, pp. 864-867
-
-
Misiurewicz, M.1
-
8
-
-
0004043484
-
-
CRC Press, Boca Raton, FL
-
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd ed., CRC Press, Boca Raton, FL, 1999.
-
(1999)
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd ed.
-
-
Robinson, C.1
-
9
-
-
0002072428
-
Coexistence of cycles of a continuous map of a line into itself
-
A.N. Sharkovsky, Coexistence of cycles of a continuous map of a line into itself, Ukrainian Math. J. 16 (1964) 61-71.
-
(1964)
Ukrainian Math. J.
, vol.16
, pp. 61-71
-
-
Sharkovsky, A.N.1
-
10
-
-
21344492385
-
On intervals, transitivity = chaos
-
M. Vellekoop and R. Berglund, On intervals, transitivity = chaos, Amer. Math. Monthly 101 (1994) 353-355.
-
(1994)
Amer. Math. Monthly
, vol.101
, pp. 353-355
-
-
Vellekoop, M.1
Berglund, R.2
|