-
1
-
-
0001535864
-
A uniform central limit theorem for set-indexed partial-sum processes with finite variance
-
K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597.
-
(1986)
Ann. Probab
, vol.14
, pp. 582-597
-
-
Alexander, K.S.1
Pyke, R.2
-
2
-
-
0003859015
-
The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions
-
N.T. Andersen, E. Giné, M. Ossiander, J. Zinn, The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Z. Wahrscheinlichkeitstheorie Verw. Geb. 77 (1988) 271-306.
-
(1988)
Z. Wahrscheinlichkeitstheorie Verw. Geb
, vol.77
, pp. 271-306
-
-
Andersen, N.T.1
Giné, E.2
Ossiander, M.3
Zinn, J.4
-
3
-
-
0000130151
-
Law of the iterated logarithm for set-indexed partial-sum processes with finite variance
-
R.F. Bass, Law of the iterated logarithm for set-indexed partial-sum processes with finite variance, Z. Wahrscheinlichkeitstheorie Verw. Geb. 70 (1985) 591-608.
-
(1985)
Z. Wahrscheinlichkeitstheorie Verw. Geb
, vol.70
, pp. 591-608
-
-
Bass, R.F.1
-
4
-
-
0000085083
-
Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets
-
R.F. Bass, R. Pyke, Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets, Ann. Probab. 12 (1984) 13-34.
-
(1984)
Ann. Probab
, vol.12
, pp. 13-34
-
-
Bass, R.F.1
Pyke, R.2
-
5
-
-
21344492381
-
Rates of convergence for minimum contrast estimators
-
L. Birgé, P. Massart, Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields 97 (1993) 113-150.
-
(1993)
Probab. Theory Related Fields
, vol.97
, pp. 113-150
-
-
Birgé, L.1
Massart, P.2
-
6
-
-
0001460009
-
Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems
-
M.D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 (1952) 277-281.
-
(1952)
Ann. Math. Statist
, vol.23
, pp. 277-281
-
-
Donsker, M.D.1
-
7
-
-
0000461359
-
Invariance principle for absolutely regular processes
-
P. Doukhan, P. Massart, E. Rio, Invariance principle for absolutely regular processes, Ann. Institut H. Poincaré 31 (1995) 393-427.
-
(1995)
Ann. Institut H. Poincaré
, vol.31
, pp. 393-427
-
-
Doukhan, P.1
Massart, P.2
Rio, E.3
-
8
-
-
0000421687
-
Central limit theorems for empirical measures
-
R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab. 6 (1978) 899-929.
-
(1978)
Ann. Probab
, vol.6
, pp. 899-929
-
-
Dudley, R.M.1
-
9
-
-
0011356577
-
Donsker classes of functions
-
M. Csörgo, D.A. Dawson, J.N.K. Rao, A.K.Md.E. Saleh (Eds.), North-Holland, Amsterdam
-
R.M. Dudley, Donsker classes of functions, in: M. Csörgo, D.A. Dawson, J.N.K. Rao, A.K.Md.E. Saleh (Eds.), Statistics and Related Topics, North-Holland, Amsterdam, 1981, pp. 341-352.
-
(1981)
Statistics and Related Topics
, pp. 341-352
-
-
Dudley, R.M.1
-
11
-
-
0000539057
-
Rates of convergence in the central limit theorem for empirical processes
-
P. Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Institut H. Poincaré 22 (1986) 381-423.
-
(1986)
Ann. Institut H. Poincaré
, vol.22
, pp. 381-423
-
-
Massart, P.1
-
12
-
-
0000364889
-
2 bracketing
-
2 bracketing, Ann. Probab. 15 (1987) 897-919.
-
(1987)
Ann. Probab
, vol.15
, pp. 897-919
-
-
Ossiander, M.1
-
13
-
-
0000065961
-
Some applications of the metric entropy condition to harmonic analysis
-
Springer, New York
-
G. Pisier, Some applications of the metric entropy condition to harmonic analysis, in: Lecture Notes in Mathematics, Vol. 995, Springer, New York, 1983, pp. 123-154.
-
(1983)
Lecture Notes in Mathematics
, vol.995
, pp. 123-154
-
-
Pisier, G.1
-
15
-
-
0001598963
-
A uniform central limit theorem for partial-sum processes indexed by sets
-
J.F.C. Kingman, G.E.H. Reuter (Eds.), Cambridge University Press, Cambridge
-
R. Pyke, A uniform central limit theorem for partial-sum processes indexed by sets, in: J.F.C. Kingman, G.E.H. Reuter (Eds.), Probability, Statistics and Analysis, Cambridge University Press, Cambridge, 1983, pp. 219-240.
-
(1983)
Probability, Statistics and Analysis
, pp. 219-240
-
-
Pyke, R.1
-
16
-
-
0000121117
-
Covariance inequalities for strongly mixing processes
-
E. Rio, Covariance inequalities for strongly mixing processes, Ann. Institut H. Poincaré 29 (1993) 587-597.
-
(1993)
Ann. Institut H. Poincaré
, vol.29
, pp. 587-597
-
-
Rio, E.1
|