메뉴 건너뛰기




Volumn 38, Issue 3-4, 2002, Pages 237-265

Diphone subspace mixture trajectory models for HMM complementation

Author keywords

Diphones; N best rescoring; PCA; Speech dynamics; Subspace trajectory; Time constraint

Indexed keywords

DATABASE SYSTEMS; ELECTROMAGNETIC WAVES; MARKOV PROCESSES; SPEECH COMMUNICATION; WAVE FILTERS;

EID: 0036836695     PISSN: 01676393     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-6393(01)00054-1     Document Type: Article
Times cited : (2)

References (44)
  • 1
    • 0020602364 scopus 로고
    • Efficient coding of LPC parameters by temporal decomposition
    • Atal B. Efficient coding of LPC parameters by temporal decomposition. Internat. Conf. Acoust. Speech Signal Process. 1:1983;81-84.
    • (1983) Internat. Conf. Acoust. Speech Signal Process. , vol.1 , pp. 81-84
    • Atal, B.1
  • 6
    • 0032119268 scopus 로고    scopus 로고
    • A dynamic, feature-based approach to the interface between phonology and phonetics for speech modeling and recognition
    • Deng L. A dynamic, feature-based approach to the interface between phonology and phonetics for speech modeling and recognition. Speech Communication. 24:1998;299-323.
    • (1998) Speech Communication , vol.24 , pp. 299-323
    • Deng, L.1
  • 7
    • 0031185482 scopus 로고    scopus 로고
    • Speaker-indepedent phonetic classification using hidden Markov models with mixture of trend functions
    • Deng L., Aksmanovic M. Speaker-indepedent phonetic classification using hidden Markov models with mixture of trend functions. IEEE Trans. Speech Audio Process. 5(4):1997;319-324.
    • (1997) IEEE Trans. Speech Audio Process. , vol.5 , Issue.4 , pp. 319-324
    • Deng, L.1    Aksmanovic, M.2
  • 8
    • 0028516022 scopus 로고
    • Speech recognition using hidden Markov models with polynomial regression functions as nonstationary states
    • Deng L., Aksmanovic M., Sun X., Wu C. Speech recognition using hidden Markov models with polynomial regression functions as nonstationary states. IEEE Trans. Speech Audio Process. 2(4):1994;507-520.
    • (1994) IEEE Trans. Speech Audio Process. , vol.2 , Issue.4 , pp. 507-520
    • Deng, L.1    Aksmanovic, M.2    Sun, X.3    Wu, C.4
  • 10
    • 0022667694 scopus 로고
    • Speaker independent isolated word recognition using dynamic features of speech spectrum
    • Furui S. Speaker independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans. Acoust. Speech Signal Process. 34(1):1986;52-59.
    • (1986) IEEE Trans. Acoust. Speech Signal Process. , vol.34 , Issue.1 , pp. 52-59
    • Furui, S.1
  • 13
    • 0027578207 scopus 로고
    • Hidden Markov models with templates as non-stationary states: An application to speech recognition
    • Ghitza O., Sondhi M. Hidden Markov models with templates as non-stationary states: an application to speech recognition. Comput. Speech Language. 2:1993;101-119.
    • (1993) Comput. Speech Language , vol.2 , pp. 101-119
    • Ghitza, O.1    Sondhi, M.2
  • 14
    • 0024909979 scopus 로고
    • Some statistical issues in the comparison of speech recognition algorithms
    • Gillick L., Cox S. Some statistical issues in the comparison of speech recognition algorithms. Internat. Conf. Acoust. Speech Signal Process. 1:1989;532-535.
    • (1989) Internat. Conf. Acoust. Speech Signal Process. , vol.1 , pp. 532-535
    • Gillick, L.1    Cox, S.2
  • 16
  • 20
    • 0030674108 scopus 로고    scopus 로고
    • Linear dynamic segmental HMMs: Variability representation and training procedure
    • Holmes W., Russell M. Linear dynamic segmental HMMs: Variability representation and training procedure. Internat. Conf. Acoust. Speech Signal Process. 2:1997;1399-1402.
    • (1997) Internat. Conf. Acoust. Speech Signal Process. , vol.2 , pp. 1399-1402
    • Holmes, W.1    Russell, M.2
  • 21
    • 0033677062 scopus 로고    scopus 로고
    • Unified frame and segment based models for automatic speech recognition
    • Hon H.-W., Wang K. Unified frame and segment based models for automatic speech recognition. Internat. Conf. Acoust. Speech Signal Process. 2:2000;1017-1020.
    • (2000) Internat. Conf. Acoust. Speech Signal Process. , vol.2 , pp. 1017-1020
    • Hon, H.-W.1    Wang, K.2
  • 24
    • 0002583871 scopus 로고
    • Speech database development: Design and analysis of the acoustic-phonetic corpus
    • Lamel, L., Kassel, R., Seneff, S., 1986. Speech database development: design and analysis of the acoustic-phonetic corpus. In: Proc. Speech Recognition Workshop (DARPA), pp. 100-109.
    • (1986) Proc. Speech Recognition Workshop (DARPA) , pp. 100-109
    • Lamel, L.1    Kassel, R.2    Seneff, S.3
  • 25
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd S. Least squares quantization in PCM. IEEE Trans. Inf. Theory. 28(2):1982;129-137.
    • (1982) IEEE Trans. Inf. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 26
    • 84927457489 scopus 로고
    • Temporal decomposition of speech
    • IPO, Eindhoven
    • Marcus, S., van Lieshout, R., 1984. Temporal decomposition of speech. Annual Progress Report, IPO, Eindhoven, pp. 25-31.
    • (1984) Annual Progress Report , pp. 25-31
    • Marcus, S.1    Van Lieshout, R.2
  • 33
    • 0024900279 scopus 로고
    • A stochastic segment model for phoneme-based continuous speech recognition
    • Ostendorf M., Roukos S. A stochastic segment model for phoneme-based continuous speech recognition. IEEE Trans. Acoust. Speech Signal Process. 37(12):1989;1857-1869.
    • (1989) IEEE Trans. Acoust. Speech Signal Process. , vol.37 , Issue.12 , pp. 1857-1869
    • Ostendorf, M.1    Roukos, S.2
  • 35
    • 0030245363 scopus 로고    scopus 로고
    • From HMM's to segment models: A unified view of stochastic modeling for speech recognition
    • Ostendorf M., Digalakis V., Kimball O. From HMM's to segment models: A unified view of stochastic modeling for speech recognition. IEEE Trans. Speech Audio Process. 4(5):1996;360-378.
    • (1996) IEEE Trans. Speech Audio Process. , vol.4 , Issue.5 , pp. 360-378
    • Ostendorf, M.1    Digalakis, V.2    Kimball, O.3
  • 37
    • 0033075044 scopus 로고    scopus 로고
    • Parametric subspace modeling of speech transitions
    • Reinhard K., Niranjan M. Parametric subspace modeling of speech transitions. Speech Communication. 27(1):1999;19-42.
    • (1999) Speech Communication , vol.27 , Issue.1 , pp. 19-42
    • Reinhard, K.1    Niranjan, M.2
  • 40
    • 72549084032 scopus 로고    scopus 로고
    • Markov processes on curves for automatic speech recognition
    • Saul L., Rahim M. Markov processes on curves for automatic speech recognition. Adv. Neural Inf. Process. Syst. 11:1998;751-757.
    • (1998) Adv. Neural Inf. Process. Syst. , vol.11 , pp. 751-757
    • Saul, L.1    Rahim, M.2
  • 41
    • 0025627406 scopus 로고
    • The N-best algorithm: An efficient and exact procedure for finding the N most likely sentence hypotheses
    • Schwartz R., Chow Y.-L. The N-best algorithm: An efficient and exact procedure for finding the N most likely sentence hypotheses. Internat. Conf. Acoust. Speech Signal Process. 1:1990;81-84.
    • (1990) Internat. Conf. Acoust. Speech Signal Process. , vol.1 , pp. 81-84
    • Schwartz, R.1    Chow, Y.-L.2
  • 43
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory. IT-13(2):1967;260-269.
    • (1967) IEEE Trans. Inf. Theory , vol.IT-13 , Issue.2 , pp. 260-269
    • Viterbi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.