-
1
-
-
0020602364
-
Efficient coding of LPC parameters by temporal decomposition
-
Atal B. Efficient coding of LPC parameters by temporal decomposition. Internat. Conf. Acoust. Speech Signal Process. 1:1983;81-84.
-
(1983)
Internat. Conf. Acoust. Speech Signal Process.
, vol.1
, pp. 81-84
-
-
Atal, B.1
-
5
-
-
0001853667
-
An investigation of segmental hidden dynamic models of speech coarticulation for automatic speech recognition
-
Johns Hopkins University
-
Bridle, J., Deng, L., Picone, J., Richards, H., Ma, J., Kamm, T., Schuster, M., Pike, S., Regan, R., 1998. An investigation of segmental hidden dynamic models of speech coarticulation for automatic speech recognition. In: Workshop on Language Engineering, Johns Hopkins University.
-
(1998)
Workshop on Language Engineering
-
-
Bridle, J.1
Deng, L.2
Picone, J.3
Richards, H.4
Ma, J.5
Kamm, T.6
Schuster, M.7
Pike, S.8
Regan, R.9
-
6
-
-
0032119268
-
A dynamic, feature-based approach to the interface between phonology and phonetics for speech modeling and recognition
-
Deng L. A dynamic, feature-based approach to the interface between phonology and phonetics for speech modeling and recognition. Speech Communication. 24:1998;299-323.
-
(1998)
Speech Communication
, vol.24
, pp. 299-323
-
-
Deng, L.1
-
7
-
-
0031185482
-
Speaker-indepedent phonetic classification using hidden Markov models with mixture of trend functions
-
Deng L., Aksmanovic M. Speaker-indepedent phonetic classification using hidden Markov models with mixture of trend functions. IEEE Trans. Speech Audio Process. 5(4):1997;319-324.
-
(1997)
IEEE Trans. Speech Audio Process.
, vol.5
, Issue.4
, pp. 319-324
-
-
Deng, L.1
Aksmanovic, M.2
-
8
-
-
0028516022
-
Speech recognition using hidden Markov models with polynomial regression functions as nonstationary states
-
Deng L., Aksmanovic M., Sun X., Wu C. Speech recognition using hidden Markov models with polynomial regression functions as nonstationary states. IEEE Trans. Speech Audio Process. 2(4):1994;507-520.
-
(1994)
IEEE Trans. Speech Audio Process.
, vol.2
, Issue.4
, pp. 507-520
-
-
Deng, L.1
Aksmanovic, M.2
Sun, X.3
Wu, C.4
-
10
-
-
0022667694
-
Speaker independent isolated word recognition using dynamic features of speech spectrum
-
Furui S. Speaker independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans. Acoust. Speech Signal Process. 34(1):1986;52-59.
-
(1986)
IEEE Trans. Acoust. Speech Signal Process.
, vol.34
, Issue.1
, pp. 52-59
-
-
Furui, S.1
-
13
-
-
0027578207
-
Hidden Markov models with templates as non-stationary states: An application to speech recognition
-
Ghitza O., Sondhi M. Hidden Markov models with templates as non-stationary states: an application to speech recognition. Comput. Speech Language. 2:1993;101-119.
-
(1993)
Comput. Speech Language
, vol.2
, pp. 101-119
-
-
Ghitza, O.1
Sondhi, M.2
-
14
-
-
0024909979
-
Some statistical issues in the comparison of speech recognition algorithms
-
Gillick L., Cox S. Some statistical issues in the comparison of speech recognition algorithms. Internat. Conf. Acoust. Speech Signal Process. 1:1989;532-535.
-
(1989)
Internat. Conf. Acoust. Speech Signal Process.
, vol.1
, pp. 532-535
-
-
Gillick, L.1
Cox, S.2
-
20
-
-
0030674108
-
Linear dynamic segmental HMMs: Variability representation and training procedure
-
Holmes W., Russell M. Linear dynamic segmental HMMs: Variability representation and training procedure. Internat. Conf. Acoust. Speech Signal Process. 2:1997;1399-1402.
-
(1997)
Internat. Conf. Acoust. Speech Signal Process.
, vol.2
, pp. 1399-1402
-
-
Holmes, W.1
Russell, M.2
-
21
-
-
0033677062
-
Unified frame and segment based models for automatic speech recognition
-
Hon H.-W., Wang K. Unified frame and segment based models for automatic speech recognition. Internat. Conf. Acoust. Speech Signal Process. 2:2000;1017-1020.
-
(2000)
Internat. Conf. Acoust. Speech Signal Process.
, vol.2
, pp. 1017-1020
-
-
Hon, H.-W.1
Wang, K.2
-
23
-
-
0010534829
-
Weight estimation for N-best rescoring
-
Kannan, A., Ostendorf, M., Rohlicek, J., 1992. Weight estimation for N-best rescoring. In: Proc. DARPA Speech and Natural Language Workshop, pp. 455-456.
-
(1992)
Proc. DARPA Speech and Natural Language Workshop
, pp. 455-456
-
-
Kannan, A.1
Ostendorf, M.2
Rohlicek, J.3
-
24
-
-
0002583871
-
Speech database development: Design and analysis of the acoustic-phonetic corpus
-
Lamel, L., Kassel, R., Seneff, S., 1986. Speech database development: design and analysis of the acoustic-phonetic corpus. In: Proc. Speech Recognition Workshop (DARPA), pp. 100-109.
-
(1986)
Proc. Speech Recognition Workshop (DARPA)
, pp. 100-109
-
-
Lamel, L.1
Kassel, R.2
Seneff, S.3
-
25
-
-
0020102027
-
Least squares quantization in PCM
-
Lloyd S. Least squares quantization in PCM. IEEE Trans. Inf. Theory. 28(2):1982;129-137.
-
(1982)
IEEE Trans. Inf. Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.1
-
26
-
-
84927457489
-
Temporal decomposition of speech
-
IPO, Eindhoven
-
Marcus, S., van Lieshout, R., 1984. Temporal decomposition of speech. Annual Progress Report, IPO, Eindhoven, pp. 25-31.
-
(1984)
Annual Progress Report
, pp. 25-31
-
-
Marcus, S.1
Van Lieshout, R.2
-
29
-
-
0028996926
-
Stochastic perceptual models of speech
-
Morgan N., Bourlard H., Greenberg S., Hermansky H., Wu S. Stochastic perceptual models of speech. Inernat. Conf. Acoust. Speech Signal Process. 1:1995;397-400.
-
(1995)
Inernat. Conf. Acoust. Speech Signal Process.
, vol.1
, pp. 397-400
-
-
Morgan, N.1
Bourlard, H.2
Greenberg, S.3
Hermansky, H.4
Wu, S.5
-
33
-
-
0024900279
-
A stochastic segment model for phoneme-based continuous speech recognition
-
Ostendorf M., Roukos S. A stochastic segment model for phoneme-based continuous speech recognition. IEEE Trans. Acoust. Speech Signal Process. 37(12):1989;1857-1869.
-
(1989)
IEEE Trans. Acoust. Speech Signal Process.
, vol.37
, Issue.12
, pp. 1857-1869
-
-
Ostendorf, M.1
Roukos, S.2
-
34
-
-
0001862342
-
Integration of diverse recognition methodologies through reevaluation of N-best sentence hypotheses
-
Ostendorf, M., Kannan, A., Austin, S., Kimball, O., Schwartz, R., Rohlicek, J., 1991. Integration of diverse recognition methodologies through reevaluation of N-best sentence hypotheses. In: Proc. DARPA Speech and Natural Language Workshop, pp. 83-87.
-
(1991)
Proc. DARPA Speech and Natural Language Workshop
, pp. 83-87
-
-
Ostendorf, M.1
Kannan, A.2
Austin, S.3
Kimball, O.4
Schwartz, R.5
Rohlicek, J.6
-
35
-
-
0030245363
-
From HMM's to segment models: A unified view of stochastic modeling for speech recognition
-
Ostendorf M., Digalakis V., Kimball O. From HMM's to segment models: A unified view of stochastic modeling for speech recognition. IEEE Trans. Speech Audio Process. 4(5):1996;360-378.
-
(1996)
IEEE Trans. Speech Audio Process.
, vol.4
, Issue.5
, pp. 360-378
-
-
Ostendorf, M.1
Digalakis, V.2
Kimball, O.3
-
36
-
-
0032639922
-
Initial evaluation of hidden dynamic models on conversational speech
-
Picone J., Pike S., Regan R., Kamm T., Bridle J., Deng L., Ma Z., Richards H., Schuster M. Initial evaluation of hidden dynamic models on conversational speech. Internat. Conf. Acoust. Speech Signal Process. 1:1999;109-112.
-
(1999)
Internat. Conf. Acoust. Speech Signal Process.
, vol.1
, pp. 109-112
-
-
Picone, J.1
Pike, S.2
Regan, R.3
Kamm, T.4
Bridle, J.5
Deng, L.6
Ma, Z.7
Richards, H.8
Schuster, M.9
-
37
-
-
0033075044
-
Parametric subspace modeling of speech transitions
-
Reinhard K., Niranjan M. Parametric subspace modeling of speech transitions. Speech Communication. 27(1):1999;19-42.
-
(1999)
Speech Communication
, vol.27
, Issue.1
, pp. 19-42
-
-
Reinhard, K.1
Niranjan, M.2
-
40
-
-
72549084032
-
Markov processes on curves for automatic speech recognition
-
Saul L., Rahim M. Markov processes on curves for automatic speech recognition. Adv. Neural Inf. Process. Syst. 11:1998;751-757.
-
(1998)
Adv. Neural Inf. Process. Syst.
, vol.11
, pp. 751-757
-
-
Saul, L.1
Rahim, M.2
-
41
-
-
0025627406
-
The N-best algorithm: An efficient and exact procedure for finding the N most likely sentence hypotheses
-
Schwartz R., Chow Y.-L. The N-best algorithm: An efficient and exact procedure for finding the N most likely sentence hypotheses. Internat. Conf. Acoust. Speech Signal Process. 1:1990;81-84.
-
(1990)
Internat. Conf. Acoust. Speech Signal Process.
, vol.1
, pp. 81-84
-
-
Schwartz, R.1
Chow, Y.-L.2
-
42
-
-
85017310294
-
New uses for the N-best sentence hypotheses within the BYBLOS speech recognition system
-
Schwartz R., Austin S., Kubala F., Makhoul J., Nguyen L., Placeway P., Zavaliagkos G. New uses for the N-best sentence hypotheses within the BYBLOS speech recognition system. Internat. Conf. Acoust. Speech Signal Process. 1:1992;1-4.
-
(1992)
Internat. Conf. Acoust. Speech Signal Process.
, vol.1
, pp. 1-4
-
-
Schwartz, R.1
Austin, S.2
Kubala, F.3
Makhoul, J.4
Nguyen, L.5
Placeway, P.6
Zavaliagkos, G.7
-
43
-
-
84935113569
-
Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
-
Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory. IT-13(2):1967;260-269.
-
(1967)
IEEE Trans. Inf. Theory
, vol.IT-13
, Issue.2
, pp. 260-269
-
-
Viterbi, A.1
-
44
-
-
0002144369
-
Tree-based state tying for high accuracy acoustic modeling
-
Young, S., Odell, J., Woodland, P., 1994. Tree-based state tying for high accuracy acoustic modeling. In: ARPA Workshop on Human Language Technology, pp. 307-312.
-
(1994)
ARPA Workshop on Human Language Technology
, pp. 307-312
-
-
Young, S.1
Odell, J.2
Woodland, P.3
|