메뉴 건너뛰기




Volumn 48, Issue 1-4, 2002, Pages 279-297

Local averaging optimization for chaotic time series prediction

Author keywords

Chaos; Embedding dimension; Local models; Metric optimization; Time series prediction

Indexed keywords

ERROR ANALYSIS; FORECASTING; OPTIMIZATION; SIGNAL FILTERING AND PREDICTION; TIME SERIES ANALYSIS;

EID: 0036825832     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(01)00647-6     Document Type: Review
Times cited : (23)

References (35)
  • 3
    • 84898968508 scopus 로고    scopus 로고
    • Lazy learning meets the recursive least squares
    • M.S. Kearns, S.A. Solla, D.A. Cohn (Eds.), MIT Press, Cambridge
    • M. Birattari, G. Bontempi, H. Bersini, Lazy learning meets the recursive least squares, in: M.S. Kearns, S.A. Solla, D.A. Cohn (Eds.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, 1999, pp. 375-381.
    • (1999) Advances in Neural Information Processing Systems , pp. 375-381
    • Birattari, M.1    Bontempi, G.2    Bersini, H.3
  • 4
    • 25544459573 scopus 로고    scopus 로고
    • Lazy learning for iterated time-series prediction
    • Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, Katholieke Universiteit Leuven, Belgium, July
    • G. Bontempi, M. Birattari, H. Bersini, Lazy learning for iterated time-series prediction, in: Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, Katholieke Universiteit Leuven, Belgium, July 1998, pp. 62-68.
    • (1998) , pp. 62-68
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 5
    • 0013271972 scopus 로고    scopus 로고
    • Local learning for iterated time-series prediction
    • Machine Learning: Proceedings of the 16th International Conference, San Francisco, CA
    • G. Bontempi, M. Birattari, H. Bersini, Local learning for iterated time-series prediction, in: Machine Learning: Proceedings of the 16th International Conference, San Francisco, CA, 1999, pp. 32-38.
    • (1999) , pp. 32-38
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 6
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman, Heuristics of instability and stabilization in model selection, The Ann. Statist. 24 (6) (1996) 2350-2383.
    • (1996) The Ann. Statist. , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 7
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: The x-random case
    • L. Breiman, P. Spector, Submodel selection and evaluation in regression: the x-random case, Int. Statist. Rev. 60 (3) (1992) 391-419.
    • (1992) Int. Statist. Rev. , vol.60 , Issue.3 , pp. 391-419
    • Breiman, L.1    Spector, P.2
  • 8
    • 44049113708 scopus 로고
    • Comparison of algorithms calculating optimal embedding parameters for delay time coordinates
    • Th. Buzug, G. Pfister, Comparison of algorithms calculating optimal embedding parameters for delay time coordinates, Physica D 58 (1992) 127-137.
    • (1992) Physica D , vol.58 , pp. 127-137
    • Buzug, Th.1    Pfister, G.2
  • 9
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • L. Cao, Practical method for determining the minimum embedding dimension of a scalar time series, Physica D 110 (1997) 43-50.
    • (1997) Physica D , vol.110 , pp. 43-50
    • Cao, L.1
  • 10
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M. Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989) 335-356.
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 11
    • 0002437378 scopus 로고
    • Nonlinear modeling of chaotic time series: Theory and applications
    • Jong Hyun Kim, J. Stringer (Eds.), Wiley, New York
    • M. Casdagli, D. Des Jardins, S. Eubank, J.D. Farmer, J. Gibson, J. Theiler, Nonlinear modeling of chaotic time series: theory and applications, in: Jong Hyun Kim, J. Stringer (Eds.), Applied Chaos, Wiley, New York, 1992, pp. 335-380.
    • (1992) Applied Chaos , pp. 335-380
    • Casdagli, M.1    Des Jardins, D.2    Eubank, S.3    Farmer, J.D.4    Gibson, J.5    Theiler, J.6
  • 12
    • 0003043646 scopus 로고
    • Exploring the continuum between deterministic and stochastic modeling
    • A.S. Weigend, N.A. Gershenfeld (Eds.), Addison-Wesley, Reading, MA
    • M.C. Casdagli, A.S. Weigend, Exploring the continuum between deterministic and stochastic modeling, in: A.S. Weigend, N.A. Gershenfeld (Eds.), Time Series Prediction, Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley, Reading, MA, 1994, pp. 347-366.
    • (1994) Time Series Prediction, Santa Fe Institute Studies in the Sciences of Complexity , pp. 347-366
    • Casdagli, M.C.1    Weigend, A.S.2
  • 13
    • 0002635074 scopus 로고
    • Exploiting chaos to predict the future and reduce noise
    • Yee Chung Lee (Ed.), World Scientific, Singapore
    • J.D. Farmer, J.J. Sidorowich, Exploiting chaos to predict the future and reduce noise, in: Yee Chung Lee (Ed.), Evolution, Learning and Cognition, World Scientific, Singapore, 1988, pp. 277-330.
    • (1988) Evolution, Learning and Cognition , pp. 277-330
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 14
    • 34249982739 scopus 로고
    • Predicting chaotic time series
    • J.D. Farmer, J.J. Sidorowich, Predicting chaotic time series, Phys. Rev. Lett. 59 (8) (1987) 845-848.
    • (1987) Phys. Rev. Lett. , vol.59 , Issue.8 , pp. 845-848
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 15
    • 0032072316 scopus 로고    scopus 로고
    • Metric adaption for analog forecasting
    • K. Fraedrich, B. Rückert, Metric adaption for analog forecasting, Physica A 253 (1998) 379-393.
    • (1998) Physica A , vol.253 , pp. 379-393
    • Fraedrich, K.1    Rückert, B.2
  • 16
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches in logarithmic expected time, ACM Trans. Math. Software 3 (3) (1977) 209-226.
    • (1977) ACM Trans. Math. Software , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 17
    • 0001243707 scopus 로고
    • Local optimal metrics and nonlinear modeling of chaotic time series
    • P. García, J. Jiménez, A. Marcano, F. Moleiro, Local optimal metrics and nonlinear modeling of chaotic time series, Phys. Rev. Lett. 76 (9) (1966) 1449-1452.
    • (1966) Phys. Rev. Lett. , vol.76 , Issue.9 , pp. 1449-1452
    • García, P.1    Jiménez, J.2    Marcano, A.3    Moleiro, F.4
  • 18
    • 0034244855 scopus 로고    scopus 로고
    • Adaptive metric kernel regression
    • C. Goutte, J. Larsen, Adaptive metric kernel regression, J. VLSI Signal Process. 26 (2000) 155-167.
    • (2000) J. VLSI Signal Process. , vol.26 , pp. 155-167
    • Goutte, C.1    Larsen, J.2
  • 20
    • 0030081743 scopus 로고    scopus 로고
    • Fast tree-structured nearest neighbor encoding for vector quantization
    • I. Katsavounidis, C.-C. Jay Kuo, Z. Zhang, Fast tree-structured nearest neighbor encoding for vector quantization, IEEE Trans. Image Process. 5 (2) (1996) 398-404.
    • (1996) IEEE Trans. Image Process. , vol.5 , Issue.2 , pp. 398-404
    • Katsavounidis, I.1    Jay Kuo, C.-C.2    Zhang, Z.3
  • 21
    • 0002624834 scopus 로고    scopus 로고
    • State space reconstruction parameters in the analysis of chaotic time series - The role of the time window length
    • D. Kugiumtzis, State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length, Physica D 95 (1996) 13-28.
    • (1996) Physica D , vol.95 , pp. 13-28
    • Kugiumtzis, D.1
  • 22
    • 0013309515 scopus 로고    scopus 로고
    • Assessing different norms in nonlinear analysis of noisy time series
    • D. Kugiumtzis, Assessing different norms in nonlinear analysis of noisy time series, Physica D 105 (1997) 62-78.
    • (1997) Physica D , vol.105 , pp. 62-78
    • Kugiumtzis, D.1
  • 23
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • D.G. Lowe, Similarity metric learning for a variable-kernel classifier, Neural Comput. 7 (1) (1995) 72-85.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.G.1
  • 25
    • 0002843288 scopus 로고    scopus 로고
    • A nearest trajectory strategy for time series prediction
    • Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, Katholieke Universiteit Leuven, Belgium, July
    • J. McNames, A nearest trajectory strategy for time series prediction, in: Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, Katholieke Universiteit Leuven, Belgium, July 1998, pp. 112-128.
    • (1998) , pp. 112-128
    • McNames, J.1
  • 26
    • 0003797247 scopus 로고    scopus 로고
    • Innovations in local modeling for time series prediction
    • Ph.D. Thesis, Stanford University
    • J. McNames, Innovations in local modeling for time series prediction, Ph.D. Thesis, Stanford University, 1999.
    • (1999)
    • McNames, J.1
  • 27
    • 0033177289 scopus 로고    scopus 로고
    • Winning entry of the K.U. Leuven time-series prediction competition
    • J. McNames, J. Suykens, J. Vandewalle, Winning entry of the K.U. Leuven time-series prediction competition, Int. J. Bifurcation Chaos 9 (8) (1999) 1485-1500.
    • (1999) Int. J. Bifurcation Chaos , vol.9 , Issue.8 , pp. 1485-1500
    • McNames, J.1    Suykens, J.2    Vandewalle, J.3
  • 28
    • 20344383594 scopus 로고
    • Forecasting a chaotic time series using an improved metric for embedding space
    • D.B. Murray, Forecasting a chaotic time series using an improved metric for embedding space, Physica D 68 (1993) 318-325.
    • (1993) Physica D , vol.68 , pp. 318-325
    • Murray, D.B.1
  • 30
    • 0001108227 scopus 로고    scopus 로고
    • Constructive incremental learning from only local information
    • S. Schaal, C.G. Atkeson, Constructive incremental learning from only local information, Neural Comput. 10 (8) (1998) 2047-2084.
    • (1998) Neural Comput. , vol.10 , Issue.8 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.G.2
  • 31
    • 0000974708 scopus 로고
    • Local optimal prediction: Exploiting strangeness and the variation of sensitivity to initial condition
    • L.A. Smith, Local optimal prediction: exploiting strangeness and the variation of sensitivity to initial condition, Philos. Trans. Roy. Soc. A 348 (1994) 371-381.
    • (1994) Philos. Trans. Roy. Soc. A , vol.348 , pp. 371-381
    • Smith, L.A.1
  • 32
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D.A. Rand, L.S. Young (Eds.), Lecture Notes in Mathematics, Springer, Berlin
    • F. Takens, Detecting strange attractors in turbulence, in: D.A. Rand, L.S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898, Springer, Berlin, 1981, pp. 336-381.
    • (1981) Dynamical Systems and Turbulence , vol.898 , pp. 336-381
    • Takens, F.1
  • 33
    • 0029184380 scopus 로고
    • An optimal metric for predicting chaotic time series
    • N. Tanaka, H. Okamoto, M. Naito, An optimal metric for predicting chaotic time series, Jpn. J. Appl. Phys. 34 (1) (1995) 388-394.
    • (1995) Jpn. J. Appl. Phys. , vol.34 , Issue.1 , pp. 388-394
    • Tanaka, N.1    Okamoto, H.2    Naito, M.3
  • 34
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P.J. Werbos, Backpropagation through time: what it does and how to do it, Proc. IEEE 78 (10) (1990) 1550-1560.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 35
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural networks, Neural Comput. 1 (2) (1989) 270-280.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.