-
4
-
-
0001202173
-
-
D. Mugnai, A. Ranfagni, R. Ruggeri, A. Agresti, and E. Recami, Phys. Lett. A 209, 227 (1995).
-
(1995)
Phys. Lett. A
, vol.209
, pp. 227
-
-
Mugnai, D.1
Ranfagni, A.2
Ruggeri, R.3
Agresti, A.4
Recami, E.5
-
6
-
-
85015732329
-
-
e-print quant-ph/9811019
-
R.Y. Chiao, e-print quant-ph/9811019.
-
-
-
Chiao, R.Y.1
-
8
-
-
85015790749
-
-
note
-
The definition of the entrance instant is more problematic than that of the outgoing one, because of the interference between the incident and reflected components of the wave function. Alternative entrance instants may be defined by using the time of passage of the free-motion wave packet across the position of the left barrier edge, by averaging time with the positive flux [9], through the read-out time of the half-width, or with some other methods, which lead to similar results.
-
-
-
-
21
-
-
0012187938
-
-
edited by A. Horzela and E. Kapuscik (Apeiron, Montreal)
-
G.C. Hegerfeldt, in Extensions of Quantum Theory, edited by A. Horzela and E. Kapuscik (Apeiron, Montreal, 2001), pp. 9-16.
-
(2001)
Extensions of Quantum Theory
, pp. 9-16
-
-
Hegerfeldt, G.C.1
-
24
-
-
4243692854
-
-
B. Segev, P.W. Milonni, J.F. Babb, and R.Y. Chiao, Phys. Rev. A 62, 022114 (2000).
-
(2000)
Phys. Rev. A
, vol.62
, pp. 022114
-
-
Segev, B.1
Milonni, P.W.2
Babb, J.F.3
Chiao, R.Y.4
-
25
-
-
0035971793
-
-
A. Kuzmich, A. Dogariu, L.J. Wang, P.W. Milonni, and R.Y. Chiao, Phys. Rev. Lett. 86, 3925 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 3925
-
-
Kuzmich, A.1
Dogariu, A.2
Wang, L.J.3
Milonni, P.W.4
Chiao, R.Y.5
-
37
-
-
85015717327
-
-
note
-
For limitations of superluminal propagation due to quantum fluctuations in systems with inverted atomic population see Refs. [23-25]; the Hartman effect is also affected by dissipation or absorption [38,39].
-
-
-
-
47
-
-
85015718953
-
-
note
-
out for a wave packet initially localized near the left edge of the barrier, and with a small spatial width compared to the barrier length d= 2a. In this way one might identify the entrance time and the preparation instant at t= 0 with a tolerable small uncertainty. However, Low and Mende speculated [48], and then Delgado and Muga showed [40], that this localization implies the dominance of over-the-barrier components. Similar conclusions are drawn from a two-detector model (one before and one after the barrier) when the detector before the barrier localizes the particle into a small spatial width compared to d [49].
-
-
-
-
49
-
-
0000348859
-
-
J.P. Palao, J.G. Muga, S. Brouard, and A. Jadczyk, Phys. Lett. A 233, 227 (1997).
-
(1997)
Phys. Lett. A
, vol.233
, pp. 227
-
-
Palao, J.P.1
Muga, J.G.2
Brouard, S.3
Jadczyk, A.4
-
55
-
-
0026367820
-
-
A. Ranfagni, D. Mugnai, P. Fabeni, G.P. Pazzi, G. Naletto, and C. Sozzi, Physica B 175, 283 (1991).
-
(1991)
Physica B
, vol.175
, pp. 283
-
-
Ranfagni, A.1
Mugnai, D.2
Fabeni, P.3
Pazzi, G.P.4
Naletto, G.5
Sozzi, C.6
-
59
-
-
85015719331
-
-
note
-
HFF by Leavens and Aers, but for a constant, i.e., the traversal time implied by Hauge et al. [60]. The fact that we are subtracting simply a classical particle time, instead of comparing with some other quantum computation, is due to the divergence of the average passage time for the free- (quantum) particle case.
-
-
-
|