-
1
-
-
85125601500
-
A Note on the Damped Vibration Absorber
-
Brock, J. E., 1946, “A Note on the Damped Vibration Absorber,” ASME J. Appl. Mech., 13(4), p. A-284.
-
(1946)
ASME J. Appl. Mech
, vol.13
, Issue.4
-
-
Brock, J.E.1
-
2
-
-
85182357734
-
The Theory of the Dynamic Vibration Absorber
-
Ormondroyd, J., and Den Hartog, J. P., 1928, “The Theory of the Dynamic Vibration Absorber,” Trans. ASME, 50(7), pp. 9-22.
-
(1928)
Trans. ASME
, vol.50
, Issue.7
, pp. 9-22
-
-
Ormondroyd, J.1
Den Hartog, J.P.2
-
4
-
-
0003822382
-
-
John Wiley & Sons, New York
-
Korenev, B. G., and Reznikov, L. M., 1993, Dynamic Vibration Absorbers: Theory and Technical Applications, John Wiley & Sons, New York.
-
(1993)
Dynamic Vibration Absorbers: Theory and Technical Applications
-
-
Korenev, B.G.1
Reznikov, L.M.2
-
5
-
-
0005105887
-
On Dynamic Vibration Absorbers for Damped Vibration Systems
-
Ikeda, T., and Ioi, T., 1977, “On Dynamic Vibration Absorbers for Damped Vibration Systems,” Trans. Jpn. Soc. Mech. Eng., 43(369), pp. 1707-1715.
-
(1977)
Trans. Jpn. Soc. Mech. Eng.
, vol.43
, Issue.369
, pp. 1707-1715
-
-
Ikeda, T.1
Ioi, T.2
-
6
-
-
0020500903
-
Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped Systems
-
Soom, A., and Ming-San, Lee., 1983, “Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped Systems,” ASME J. Vibr. Acoust., 105(1), pp. 112-1193.
-
(1983)
ASME J. Vibr. Acoust.
, vol.105
, Issue.1
, pp. 112-1193
-
-
Soom, A.1
Ming-San, L.2
-
7
-
-
0005210299
-
H2, Mixed H2 /H, and H2 Optimally Tuned Passive Isolators and Absorbers
-
Haddad, W. M., and Razavi, A., 1998, “H2, Mixed H2 /H, and H2 Optimally Tuned Passive Isolators and Absorbers,” ASME J. Dyn. Syst., Meas., Control, 120(2), pp. 282-287.
-
(1998)
ASME J. Dyn. Syst., Meas., Control
, vol.120
, Issue.2
, pp. 282-287
-
-
Haddad, W.M.1
Razavi, A.2
-
8
-
-
0031248190
-
Design of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Magnification Factor (Derivation of Algebraic Exact Solution)
-
Nishihara, O., and Matsuhisa, H., 1997, “Design of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Magnification Factor (Derivation of Algebraic Exact Solution),” Trans. Jpn. Soc. Mech. Eng., Ser. C, 63(614), pp. 3438-3445.
-
(1997)
Trans. Jpn. Soc. Mech. Eng., Ser. C
, vol.63
, Issue.614
, pp. 3438-3445
-
-
Nishihara, O.1
Matsuhisa, H.2
-
9
-
-
0005147163
-
Exact Algebraic Optimization of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Response (1st Report, Viscous Damped Absorber)
-
Nishihara, O., Asami, T., and Watanabe, S., 2000, “Exact Algebraic Optimization of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Response (1st Report, Viscous Damped Absorber),” Trans. Jpn. Soc. Mech. Eng., Ser. C, 66(642), pp. 420-426.
-
(2000)
Trans. Jpn. Soc. Mech. Eng., Ser. C
, vol.66
, Issue.642
, pp. 420-426
-
-
Nishihara, O.1
Asami, T.2
Watanabe, S.3
-
10
-
-
0005198722
-
Exact Algebraic Optimization of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Response (2nd Report, Hysteretic Damped Absorber)
-
Asami, T., Nishihara, O., and Watanabe, S., 2000, “Exact Algebraic Optimization of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Response (2nd Report, Hysteretic Damped Absorber),” Trans. Jpn. Soc. Mech. Eng., Ser. C, 66(644), pp. 1186-1193.
-
(2000)
Trans. Jpn. Soc. Mech. Eng., Ser. C
, vol.66
, Issue.644
, pp. 1186-1193
-
-
Asami, T.1
Nishihara, O.2
Watanabe, S.3
-
11
-
-
85025191952
-
Design of a Passive Gyroscopic Damper for Minimization of Maximum Amplitude Magnification Factor
-
Azuma, T, Nishihara, O., Honda, Y., and Matsuhisa, H., 1997, “Design of a Passive Gyroscopic Damper for Minimization of Maximum Amplitude Magnification Factor,” Preprint of JSME (in Japanese), No. 974-2, pp. 53-54.
-
(1997)
Preprint of JSME (In Japanese)
, vol.974-2
, pp. 53-54
-
-
Azuma, T.1
Nishihara, O.2
Honda, Y.3
Matsuhisa, H.4
-
12
-
-
0003409031
-
-
Second Edition), Addison-Wesley, Reading, MA
-
Wolfram, S., 1991, Mathematica-A System for Doing Mathematics by Computer (Second Edition), Addison-Wesley, Reading, MA.
-
(1991)
Mathematica-A System for Doing Mathematics by Computer
-
-
Wolfram, S.1
-
13
-
-
84998446703
-
Approximate Expression for Design of Optimal Dynamic Absorbers Attached to Damped Linear Systems (2nd Report, Optimization Process Based on the Fixed-Points Theory)
-
Asami, T., and Hosokawa, Y., 1995, “Approximate Expression for Design of Optimal Dynamic Absorbers Attached to Damped Linear Systems (2nd Report, Optimization Process Based on the Fixed-Points Theory),” Trans. Jpn. Soc. Mech. Eng., Ser. C, 61(583), pp. 915-921.
-
(1995)
Trans. Jpn. Soc. Mech. Eng., Ser. C
, vol.61
, Issue.583
, pp. 915-921
-
-
Asami, T.1
Hosokawa, Y.2
-
14
-
-
85025197096
-
Design Optimization of Dynamic Vibration Absorber for Minimization of Maximum Amplitude Magnification Factor (Consideration of Primary System Damping by Numerical Exact Solution)
-
Nishihara, O., Asami, T., and Kumamoto, H., 1999, “Design Optimization of Dynamic Vibration Absorber for Minimization of Maximum Amplitude Magnification Factor (Consideration of Primary System Damping by Numerical Exact Solution),” Preprint of JSME (in Japanese), No. 99-7 (1), pp. 365-368.
-
(1999)
Preprint of JSME (In Japanese)
, vol.99-7
, Issue.1
, pp. 365-368
-
-
Nishihara, O.1
Asami, T.2
Kumamoto, H.3
-
15
-
-
0032668041
-
Analytical and Experimental Evaluation of an Air-Damped Dynamic Vibration Absorber: Design Optimizations of the Three-Element Type Model
-
Asami, T., and Nishihara, O., 1999, “Analytical and Experimental Evaluation of an Air-Damped Dynamic Vibration Absorber: Design Optimizations of the Three-Element Type Model,” ASME J. Vibr. Acoust., 121(3), pp. 334-342.
-
(1999)
ASME J. Vibr. Acoust.
, vol.121
, Issue.3
, pp. 334-342
-
-
Asami, T.1
Nishihara, O.2
|