-
1
-
-
0005082123
-
Test Matrix Collection for Non-Hermitian Eigenvalue Problems
-
Z. Bai, R. Barret, D. Day. J. Demmel and J Dongarra, Test Matrix Collection for Non-Hermitian Eigenvalue Problems, Matrix Market, (1998); http://math.nist.gov/MatrixMarket.
-
(1998)
Matrix Market
-
-
Bai, Z.1
Barret, R.2
Day, D.3
Demmel, J.4
Dongarra, J.5
-
2
-
-
0003521777
-
-
Manchester University Press in Algorithms and Architectures for Advanced Scientific Computing
-
Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press in Algorithms and Architectures for Advanced Scientific Computing, (1992).
-
(1992)
Numerical Methods for Large Eigenvalue Problems
-
-
Saad, Y.1
-
3
-
-
84966221080
-
The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems
-
T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. Comput. 35, 1251-1268, (1980).
-
(1980)
Math. Comput.
, vol.35
, pp. 1251-1268
-
-
Ericsson, T.1
Ruhe, A.2
-
4
-
-
0001976163
-
A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems
-
R.G. Grimes, J.G. Lewis and H.D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl. 15, 228-272, (1994).
-
(1994)
SIAM J. Matrix Anal. Appl.
, vol.15
, pp. 228-272
-
-
Grimes, R.G.1
Lewis, J.G.2
Simon, H.D.3
-
5
-
-
0001422598
-
Rational Krylov sequence methods for eigenvalue computation
-
A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl. 58, 391-405, (1984).
-
(1984)
Linear Algebra Appl.
, vol.58
, pp. 391-405
-
-
Ruhe, A.1
-
6
-
-
0038880200
-
Rational Krylov algorithms for nonsymmetric eigenvalue problems
-
(Edited by G. Golub, A. Greenbaum and M. Luskin), Springer-Verlag, New York
-
A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, In Recent Advances in Iterative Methods, IMA Vol. Math. Appl. 60, (Edited by G. Golub, A. Greenbaum and M. Luskin), pp. 149-164, Springer-Verlag, New York, (1994).
-
(1994)
Recent Advances in Iterative Methods, IMA Vol. Math. Appl.
, vol.60
, pp. 149-164
-
-
Ruhe, A.1
-
7
-
-
43949153380
-
Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs
-
A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs, Linear Algebra Appl. 197/198. 283-296. (1994).
-
(1994)
Linear Algebra Appl.
, vol.197-198
, pp. 283-296
-
-
Ruhe, A.1
-
8
-
-
0001409002
-
The rational Krylov algorithms for nonsymmetric eigenvalue problems, III: Complex shifts for real matrices
-
A. Ruhe, The rational Krylov algorithms for nonsymmetric eigenvalue problems, III: Complex shifts for real matrices, BIT 34, 165-176, (1994).
-
(1994)
BIT
, vol.34
, pp. 165-176
-
-
Ruhe, A.1
-
9
-
-
0000630785
-
Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils
-
A. Ruhe, Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci. Comput. 19, 1535-1551, (1998).
-
(1998)
SIAM J. Sci. Comput.
, vol.19
, pp. 1535-1551
-
-
Ruhe, A.1
-
10
-
-
21844507092
-
The convergence of generalized Lanczos methods for large unsymmetric eigenproblems
-
Z. Jia, The convergence of generalized Lanczos methods for large unsymmetric eigenproblems, SIAM J. Matrix Anal. Appl. 16, 843-862, (1995).
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 843-862
-
-
Jia, Z.1
-
11
-
-
0001472199
-
Composite orthogonal projection methods for large eigenproblems
-
Z. Jia. Composite orthogonal projection methods for large eigenproblems, Science in China, Set. A 42, 577-585. (1999).
-
(1999)
Science in China, Set. A
, vol.42
, pp. 577-585
-
-
Jia, Z.1
-
12
-
-
0035531373
-
An analysis of the Rayleigh-Ritz method for approximate eigenspaces
-
Z. Jia and G.W. Stewart, An analysis of the Rayleigh-Ritz method for approximate eigenspaces, Math. Comput. 70, 637-647, (2001).
-
(2001)
Math. Comput.
, vol.70
, pp. 637-647
-
-
Jia, Z.1
Stewart, G.W.2
-
13
-
-
0038866149
-
Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems
-
Z. Jia, Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems, Linear Algebra Appl. 259, 1-23, (1997).
-
(1997)
Linear Algebra Appl.
, vol.259
, pp. 1-23
-
-
Jia, Z.1
-
14
-
-
0042496332
-
A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems
-
Z. Jia, A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems, Linear Algebra Appl. 270, 171-189, (1998).
-
(1998)
Linear Algebra Appl.
, vol.270
, pp. 171-189
-
-
Jia, Z.1
-
15
-
-
0039627923
-
Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm
-
Z. Jia, Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl. 287, 191-214, (1999).
-
(1999)
Linear Algebra Appl.
, vol.287
, pp. 191-214
-
-
Jia, Z.1
-
16
-
-
0033888047
-
A refined subspace iteration algorithm for large sparse eigenproblems
-
Z. Jia, A refined subspace iteration algorithm for large sparse eigenproblems, Appl. Numer. Math. 32, 35-52, (2000).
-
(2000)
Appl. Numer. Math.
, vol.32
, pp. 35-52
-
-
Jia, Z.1
-
17
-
-
0035313102
-
Residuals of refined projection methods for large matrix eigenproblems
-
Z. Jia, Residuals of refined projection methods for large matrix eigenproblems, Computers Math. Applic. 41 (7/8), 813-820, (2001).
-
(2001)
Computers Math. Applic.
, vol.41
, Issue.7-8
, pp. 813-820
-
-
Jia, Z.1
-
18
-
-
0036727211
-
The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices
-
to appear
-
Z. Jia, The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices, Appl. Numer. Math. (to appear).
-
Appl. Numer. Math.
-
-
Jia, Z.1
|