메뉴 건너뛰기




Volumn 14, Issue 3, 2002, Pages 219-229

Task-dependent evolution of modularity in neural networks

Author keywords

Learning; Measures for modularity; Structure evolution; Task decomposition

Indexed keywords

INFORMATION THEORY; LARGE SCALE SYSTEMS; LEARNING SYSTEMS; PROBLEM SOLVING;

EID: 0036768801     PISSN: 09540091     EISSN: None     Source Type: Journal    
DOI: 10.1080/09540090208559328     Document Type: Article
Times cited : (16)

References (25)
  • 1
    • 0013012992 scopus 로고    scopus 로고
    • Simulating the evolution of modular neural systems
    • J. D. Moore and K. Stenning (eds), Edinburgh, Scotland (Mahwah, NJ: USA (Lawrence Erlbaum Associates)
    • Bullinaria, J. A., 2001, Simulating the evolution of modular neural systems. In J. D. Moore and K. Stenning (eds) Proceeding of the Twenty-third Annual Conference of the Cognitive Science Society, Edinburgh, Scotland (Mahwah, NJ: USA (Lawrence Erlbaum Associates), pp. 146-151.
    • (2001) Proceeding of the Twenty-third Annual Conference of the Cognitive Science Society , pp. 146-151
    • Bullinaria, J.A.1
  • 6
    • 84977058391 scopus 로고
    • Automatic definition of modular neural networks
    • Grau, F., 1995, Automatic definition of modular neural networks. Adaptive Behavior, 3 (2): 151-183.
    • (1995) Adaptive Behavior , vol.3 , Issue.2 , pp. 151-183
    • Grau, F.1
  • 7
    • 0012963758 scopus 로고    scopus 로고
    • Optimization for problem classes-neural networks that learn to learn
    • X. Yao and D. B. Fogel (eds) (ECNN 2000) San Antonio, TX, USA (IEEE Press)
    • Hüsken, M., Gayko, J. E. and Sendhoff, B. A., 2000, Optimization for problem classes-neural networks that learn to learn. In X. Yao and D. B. Fogel (eds) IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (ECNN 2000) San Antonio, TX, USA (IEEE Press), pp. 98-109.
    • (2000) IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks , pp. 98-109
    • Hüsken, M.1    Gayko, J.E.2    Sendhoff, B.A.3
  • 9
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • January 2003
    • Igel, C., and Hüsken, M., 2003, Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing, January 2003, 50:105-123.
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 10
    • 0001693031 scopus 로고
    • Modular and hierarchical learning systems
    • M. A. Arbib (ed.) (Cambridge MA: MIT Press)
    • Jordan, M. I., and Jacobs, A., 1995, Modular and hierarchical learning systems. In M. A. Arbib (ed.) The Handbook of Brain Theory and Neural Networks (Cambridge MA: MIT Press), pp. 579-582.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 579-582
    • Jordan, M.I.1    Jacobs, A.2
  • 11
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano, H., 1990, Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4: 461-476.
    • (1990) Complex Systems , vol.4 , pp. 461-476
    • Kitano, H.1
  • 12
    • 0032159690 scopus 로고    scopus 로고
    • Formation and dynamics of modules in a dual-tasking multilayer feed-forward neural network
    • Lam, C.-H., and Shin, F. G., 1998, Formation and dynamics of modules in a dual-tasking multilayer feed-forward neural network. Physical Review E, 58 (3): 3673-3677.
    • (1998) Physical Review E , vol.58 , Issue.3 , pp. 3673-3677
    • Lam, C.-H.1    Shin, F.G.2
  • 13
    • 0032682507 scopus 로고    scopus 로고
    • Learning and evolution
    • Nolfi, S., and Parisi, D., 1999, Learning and evolution. Autonomous Robots, 7 (1): 89-113.
    • (1999) Autonomous Robots , vol.7 , Issue.1 , pp. 89-113
    • Nolfi, S.1    Parisi, D.2
  • 14
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA, USA (IEEE Press)
    • Riedmiller, M., and Braun, H., 1993, A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA (IEEE Press), pp. 586-591.
    • (1993) Proceedings of the IEEE International Conference on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 15
    • 0024845029 scopus 로고
    • Why are 'what' and 'where' processed by separate cortical visual systems? A computational investigation
    • Rueckl, J. G., Cave, K. R., and Kosslyn, S. M., 1989, Why are 'what' and 'where' processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience, 1: 171-186.
    • (1989) Journal of Cognitive Neuroscience , vol.1 , pp. 171-186
    • Rueckl, J.G.1    Cave, K.R.2    Kosslyn, S.M.3
  • 18
    • 33744755428 scopus 로고    scopus 로고
    • Variable encoding of modular neural networks for time series prediction
    • Washington DC, USA, (IEEE Press)
    • Sendhoff, B. A., and Kreutz, M., 1999, Variable encoding of modular neural networks for time series prediction. In Congress on Evolutionary Computation (CEC '99) Washington DC, USA, Vol. 1 (IEEE Press), pp. 259-266.
    • (1999) Congress on Evolutionary Computation (CEC '99) , vol.1 , pp. 259-266
    • Sendhoff, B.A.1    Kreutz, M.2
  • 19
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural networks
    • Sharkey, A., 1996. On combining artificial neural networks. Connection Science, 8 (3): 299-314
    • (1996) Connection Science , vol.8 , Issue.3 , pp. 299-314
    • Sharkey, A.1
  • 20
    • 0031516467 scopus 로고    scopus 로고
    • Modularity, combining and artificial neural nets
    • Sharkey, A. 1997, Modularity, combining and artificial neural nets. Connection Science, 9 (1): 3-10.
    • (1997) Connection Science , vol.9 , Issue.1 , pp. 3-10
    • Sharkey, A.1
  • 22
    • 0029430460 scopus 로고
    • MONSTER-the ghost in the connection machine: Modularity of neural systems in theoretical evolutionary research
    • San Diego, CA, USA, (ACM Press and IEEE Press)
    • Snoad, N., and Bossomaier. T., 1995, MONSTER-the ghost in the connection machine: modularity of neural systems in theoretical evolutionary research. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego, CA, USA, (ACM Press and IEEE Press).
    • (1995) Proceedings of the 1995 ACM/IEEE Supercomputing Conference
    • Snoad, N.1    Bossomaier, T.2
  • 25
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao, X., 1999, Evolving artificial neural networks. Proceedings of the IEEE, 87 (9): 1423-1447.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.