-
1
-
-
0001987571
-
Inapproximability of some geometric and quadratic optimization problems
-
[BGK], In: Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems (P. M. Pardalos, ed.), Kluwer, Boston
-
[BGK] A. Brieden, P. Gritzmann, and V. Klee, Inapproximability of some geometric and quadratic optimization problems, In: Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems (P. M. Pardalos, ed.), Nonconvex Optimization and its Applications, vol. 42, Kluwer, Boston, 2000, pp. 96-115.
-
(2000)
Nonconvex Optimization and Its Applications
, vol.42
, pp. 96-115
-
-
Brieden, A.1
Gritzmann, P.2
Klee, V.3
-
2
-
-
0002606458
-
Approximation of radii and norm-maxima: Randomization doesn't help
-
+1]
-
+1] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, and M. Simonovits, Approximation of radii and norm-maxima: randomization doesn't help, Proc. 39th IEEE FOCS, 1998, pp. 244-251.
-
(1998)
Proc. 39th IEEE FOCS
, pp. 244-251
-
-
Brieden, A.1
Gritzmann, P.2
Kannan, R.3
Klee, V.4
Lovász, L.5
Simonovits, M.6
-
3
-
-
84922460822
-
Deterministic and randomized polynomial-time approximation of radii
-
+2]
-
+2] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, and M. Simonovits, Deterministic and randomized polynomial-time approximation of radii, to appear in Mathematika.
-
Mathematika
-
-
Brieden, A.1
Gritzmann, P.2
Kannan, R.3
Klee, V.4
Lovász, L.5
Simonovits, M.6
-
4
-
-
0001447701
-
Computational complexity of norm-maximization
-
[BGKL]
-
[BGKL] H.L. Bodlaender, P. Gritzmann, V. Klee, and J. van Leeuwen, Computational complexity of norm-maximization, Combinatorica 10(2) (1990), 203-225.
-
(1990)
Combinatorica
, vol.10
, Issue.2
, pp. 203-225
-
-
Bodlaender, H.L.1
Gritzmann, P.2
Klee, V.3
Van Leeuwen, J.4
-
5
-
-
0000011818
-
The complexity of approximating a nonlinear program
-
[BR]
-
[BR] M. Bellare and P. Rogaway, The complexity of approximating a nonlinear program, Math. Programming 69 (1995), 429-441.
-
(1995)
Math. Programming
, vol.69
, pp. 429-441
-
-
Bellare, M.1
Rogaway, P.2
-
6
-
-
0027964132
-
Two prover protocols-low error at affordable rates
-
[FK]
-
[FK] U. Feige and J. Kilian, Two prover protocols-low error at affordable rates, Proc. 26th ACM STOC, 1994, pp. 172-183.
-
(1994)
Proc. 26th ACM STOC
, pp. 172-183
-
-
Feige, U.1
Kilian, J.2
-
7
-
-
0026991175
-
Two-prover one-round proof systems: Their power and their problems
-
[FL]
-
[FL] U. Feige and L. Lovász, Two-prover one-round proof systems: their power and their problems, Proc. 24th ACM STOC, 1992, pp. 733-744.
-
(1992)
Proc. 24th ACM STOC
, pp. 733-744
-
-
Feige, U.1
Lovász, L.2
-
8
-
-
0000012770
-
Inner and outer j-radii of convex bodies in finite-dimensional normed spaces
-
[GK1]
-
[GK1] P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional normed spaces, Discrete Comput. Geom. 7 (1992), 255-280.
-
(1992)
Discrete Comput. Geom.
, vol.7
, pp. 255-280
-
-
Gritzmann, P.1
Klee, V.2
-
9
-
-
0027579358
-
Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces
-
[GK2]
-
[GK2] P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces, Math. Programming 59 (1993), 163-213.
-
(1993)
Math. Programming
, vol.59
, pp. 163-213
-
-
Gritzmann, P.1
Klee, V.2
-
10
-
-
0000382510
-
Computational convexity
-
[GK3], (J. E. Goodman and J. O'Rourke, eds.), CRC Press, Boca Raton, FL
-
[GK3] P. Gritzmann and V. Klee, Computational convexity, In: Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O'Rourke, eds.), CRC Press, Boca Raton, FL, 1997, pp. 491-516.
-
(1997)
Handbook of Discrete and Computational Geometry
, pp. 491-516
-
-
Gritzmann, P.1
Klee, V.2
-
11
-
-
0013003080
-
-
Working paper, Department of Management Science, University of Iowa, Iowa City, IA 52242
-
Y. Ye, Approximating quadratic programming with bound constraints, Working paper, Department of Management Science, University of Iowa, Iowa City, IA 52242, 1997.
-
(1997)
Approximating Quadratic Programming with Bound Constraints
-
-
Ye, Y.1
|