메뉴 건너뛰기




Volumn 15, Issue 7, 2002, Pages 881-890

A feed-forward network for input that is both categorical and quantitative

Author keywords

Anova; Categorical variable regression; Feed forward neural networks; Indicator variables; Multi layer perceptron; Nominal input

Indexed keywords

MAPPING; NUMERICAL METHODS; VARIATIONAL TECHNIQUES;

EID: 0036756238     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(02)00090-4     Document Type: Article
Times cited : (34)

References (10)
  • 3
    • 0343990084 scopus 로고    scopus 로고
    • Training a feedforward network by feeding gradients forward rather then by backpropagation of errors
    • Brouwer R.K. Training a feedforward network by feeding gradients forward rather then by backpropagation of errors. Neurocomputing. 16:(2):1997;117-126.
    • (1997) Neurocomputing , vol.16 , Issue.2 , pp. 117-126
    • Brouwer, R.K.1
  • 4
    • 0017947982 scopus 로고
    • Hedonic prices and the demand for clean air
    • Date: 7 July 1993
    • Harrison D., Rubinfled D.L. Hedonic prices and the demand for clean air. Journal of Environmental Economics and Management. 5:1978;81-102. Date: 7 July 1993 (The data set is available at http://www.ics.uci.edu/~mlearn/MLRepository.html ).
    • (1978) Journal of Environmental Economics and Management , vol.5 , pp. 81-102
    • Harrison, D.1    Rubinfled, D.L.2
  • 8
    • 0003444646 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart, J.L. McClelland, PDP Research Group Cambridge, MA: MIT Press
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Rumelhart D.E., McClelland J.L., PDP Research Group, Parallel distributed processing. 1986;318-362 MIT Press, Cambridge, MA.
    • (1986) Parallel distributed processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.