메뉴 건너뛰기




Volumn 15, Issue 7, 2002, Pages 873-879

SpikeCell: A deterministic spiking neuron

Author keywords

Formal neurons; Hardware implementation; Harsh environment; Learning; Neural networks; Pulsed neural networks; Spiking neurons

Indexed keywords

ALGORITHMS; IRRADIATION; NEUTRON ACTIVATION ANALYSIS; PATTERN RECOGNITION; RELAXATION PROCESSES;

EID: 0036755334     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(02)00033-3     Document Type: Article
Times cited : (2)

References (23)
  • 4
    • 84947442757 scopus 로고
    • Incremental learning with a stopping criterion. Experimental results
    • Chentouf, R., & Jutten, C. (1995). Incremental learning with a stopping criterion. Experimental results. Lecture Notes in Computer Science 930.
    • (1995) Lecture Notes in Computer Science , pp. 930
    • Chentouf, R.1    Jutten, C.2
  • 5
    • 0033982910 scopus 로고    scopus 로고
    • Training neural networks to be insensitive to weight random variations
    • Conti M., Orcioni S., Turchetti C. Training neural networks to be insensitive to weight random variations. Neural Networks. 13:(1):2000;125-132.
    • (2000) Neural Networks , vol.13 , Issue.1 , pp. 125-132
    • Conti, M.1    Orcioni, S.2    Turchetti, C.3
  • 7
    • 0032871941 scopus 로고    scopus 로고
    • Spikenet: A simulator for modeling large networks of integrate and fire neurons
    • Delorme A., Gautrais J., VanRullen R., Thorpe S. Spikenet: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing. 26-27:1999;989-996.
    • (1999) Neurocomputing , vol.26-27 , pp. 989-996
    • Delorme, A.1    Gautrais, J.2    VanRullen, R.3    Thorpe, S.4
  • 10
    • 0031579674 scopus 로고    scopus 로고
    • A pulse-based reinforcement algorithm for learning continuous functions
    • Gorse D., Romano-Critchley D., Taylor J. A pulse-based reinforcement algorithm for learning continuous functions. Neurocomputing Journal. 14:1997;319-344.
    • (1997) Neurocomputing Journal , vol.14 , pp. 319-344
    • Gorse, D.1    Romano-Critchley, D.2    Taylor, J.3
  • 11
    • 0001234705 scopus 로고
    • Second derivatives for network pruning: Optimal brain surgeon
    • S.J. Hanson, J.D. Cowan, & C.L. Giles. San Mateo, CA: Morgan Kaufmann
    • Hassibi B., Stork D.G. Second derivatives for network pruning: Optimal brain surgeon. Hanson S.J., Cowan J.D., Giles C.L., Proceedings of the 1992 Conference. Proceedings of the 1992 Conference. 1993;Morgan Kaufmann, San Mateo, CA.
    • (1993) Proceedings of the 1992 Conference
    • Hassibi, B.1    Stork, D.G.2
  • 16
    • 0031568358 scopus 로고    scopus 로고
    • Fast sigmoidal networks via spiking neurons
    • Maass W. Fast sigmoidal networks via spiking neurons. Neural Computation. 9:(2):1997;279-304.
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 279-304
    • Maass, W.1
  • 19
    • 0035380719 scopus 로고    scopus 로고
    • Rate coding vs temporal order coding: What the retinal ganglion cells tell the visual cortex
    • Rullen R.V., Thorpe S.J. Rate coding vs temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Computation. 13:(6):2001;1255-1283.
    • (2001) Neural Computation , vol.13 , Issue.6 , pp. 1255-1283
    • Rullen, R.V.1    Thorpe, S.J.2
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D., Hinton G., Williams R. Learning representations by back-propagating errors. Nature. 323:1986;533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.