메뉴 건너뛰기




Volumn 54, Issue 3, 2002, Pages 419-441

Floquet multipliers of symmetric rapidly oscillating solutions of differential delay equations

Author keywords

Delay equations with symmetry; Floquet multipliers; Rapidly oscillating periodic solutions; Stability

Indexed keywords


EID: 0036749506     PISSN: 00408735     EISSN: None     Source Type: Journal    
DOI: 10.2748/tmj/1113247603     Document Type: Article
Times cited : (5)

References (22)
  • 1
    • 84966251361 scopus 로고
    • Characteristic multipliers and stability of periodic solutions of x(T) = g (x(t − 1))
    • S.-N. CHOW and H.-O. Walther, Characteristic multipliers and stability of periodic solutions of x(t) = g (x(t − 1)), Trans. Amer. Math. Soc. 307 (1988), 127-142.
    • (1988) Trans. Amer. Math. Soc , vol.307 , pp. 127-142
    • Chow, S.-N.1    Walther, H.-O.2
  • 3
    • 38249025408 scopus 로고
    • Smooth bifurcation of symmetric periodic solutions of functional differential equations
    • P. DORMAYER, Smooth bifurcation of symmetric periodic solutions of functional differential equations, J. Differential Equations 82 (1989), 109-155.
    • (1989) J. Differential Equations , vol.82 , pp. 109-155
    • Dormayer, P.1
  • 4
    • 0002093136 scopus 로고
    • An attractivity region for characteristic multipliers of special symmetric solutions of x(T) = αf(x(t − 1)) near critical amplitudes
    • P. DORMAYER, An attractivity region for characteristic multipliers of special symmetric solutions of x(t) = αf(x(t − 1)) near critical amplitudes, J. Math. Anal. Appl. 169 (1992), 70-91.
    • (1992) J. Math. Anal. Appl , vol.169 , pp. 70-91
    • Dormayer, P.1
  • 5
    • 84972534209 scopus 로고
    • Smooth symmetry-breaking bifurcation for functional differential equations
    • P. DORMAYER, Smooth symmetry-breaking bifurcation for functional differential equations, Differential Integral Equations 5 (1992), 831-854.
    • (1992) Differential Integral Equations , vol.5 , pp. 831-854
    • Dormayer, P.1
  • 6
    • 0010813253 scopus 로고    scopus 로고
    • Stability of symmetric periodic solutions with small amplitude of x (T) = αf(x(t − 1))
    • P. DORMAYER and A. F. IVANOV, Stability of symmetric periodic solutions with small amplitude of x (t) = αf(x(t − 1)), Discrete Contin. Dynam. Systems 5 (1999), 61-82.
    • (1999) Discrete Contin. Dynam. Systems , vol.5 , pp. 61-82
    • Dormayer, P.1    Ivanov, A.F.2
  • 7
    • 0010876516 scopus 로고    scopus 로고
    • Symmetric periodic solutions of a delay differential equation, Dynamical systems and differential equations
    • (Springfield, MO, 1996), Added Volume I
    • P. DORMAYER and A. F. IVANOV, Symmetric periodic solutions of a delay differential equation, Dynamical systems and differential equations, Vol. 1 (Springfield, MO, 1996), Added volume to Discrete Contin. Dynam. Systems, 1998, Added Volume I, 220-230.
    • (1998) Added Volume to Discrete Contin. Dynam. Systems , vol.1 , pp. 220-230
    • Dormayer, P.1    Ivanov, A.F.2
  • 8
    • 21844481996 scopus 로고
    • Floquet multipliers and Secondary Bifurcations in Functional Differential Equations, Numerical and Analytical Results
    • P. DORMAYER and B. Lani-Wayda, Floquet multipliers and Secondary Bifurcations in Functional Differential Equations, Numerical and Analytical Results, Z. Angew. Math. Phys. 46 (1995), 823-858.
    • (1995) Z. Angew. Math. Phys , vol.46 , pp. 823-858
    • Dormayer, P.1    Lani-Wayda, B.2
  • 10
    • 0010875234 scopus 로고    scopus 로고
    • Stable rapidly oscillating solutions in delay differential equations with negative feedback
    • A. F. IVANOV and J. Losson, Stable rapidly oscillating solutions in delay differential equations with negative feedback, Differential Integral Equations 12 (1999), 811-832.
    • (1999) Differential Integral Equations , vol.12 , pp. 811-832
    • Ivanov, A.F.1    Losson, J.2
  • 11
    • 0010939478 scopus 로고
    • Unstable hyperbolic periodic solutions of differential delay equations
    • (R. P. Agarwal), World Scientific, Singapore
    • A. F. IVANOV, B. Lani-Wayda and H.-O. Walther, Unstable hyperbolic periodic solutions of differential delay equations, Recent Trends in Differential Equations (Ed. R. P. Agarwal), 301-316, World Scientific, Singapore, 1992.
    • (1992) Recent Trends in Differential Equations , pp. 301-316
    • Ivanov, A.F.1    Lani-Wayda, B.2    Walther, H.-O.3
  • 12
    • 0010939479 scopus 로고
    • On periodic solutions of certain classes of differential difference equations
    • Publ. by the Institute of Mathematics, Ukrainian Academy of Sciences (in Russian), Kiev
    • A. F. IVANOV and A. N. Sharkovsky, On periodic solutions of certain classes of differential difference equations, Oscillation and Stability of Solutions of Differential Functional Equations, 25-34, Publ. by the Institute of Mathematics, Ukrainian Academy of Sciences (in Russian), Kiev, 1982.
    • (1982) Oscillation and Stability of Solutions of Differential Functional Equations , pp. 25-34
    • Ivanov, A.F.1    Sharkovsky, A.N.2
  • 14
    • 0000138087 scopus 로고
    • Periodic motions in Banach space and application to functional differential equations
    • G. S. JONES, Periodic motions in Banach space and application to functional differential equations, Contributions to Differential Equations 3 (1964), 75-106.
    • (1964) Contributions to Differential Equations , vol.3 , pp. 75-106
    • Jones, G.S.1
  • 15
    • 0016128963 scopus 로고
    • Ordinary differential equations which yield periodic solutions of differential delay equations
    • J. L. KAPLAN and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl. 48 (1974), 317-324.
    • (1974) J. Math. Anal. Appl , vol.48 , pp. 317-324
    • Kaplan, J.L.1    Yorke, J.A.2
  • 16
    • 0010811961 scopus 로고    scopus 로고
    • Wandering solutions of sine-like delay equations
    • Providence, RI
    • B. Lani-Wayda, Wandering solutions of sine-like delay equations, Mem. Amer. Math. Soc. 151 No. 718, Providence, RI, 2001.
    • (2001) Mem. Amer. Math. Soc , vol.151 , Issue.718
    • Lani-Wayda, B.1
  • 17
    • 49249146492 scopus 로고
    • Uniqueness and nonuniqueness for periodic solutions of x(T) = −g (x(t − 1))
    • R. D. NUSSBAUM, Uniqueness and nonuniqueness for periodic solutions of x(t) = −g (x(t − 1)), J. Differential Equations 34 (1979), 25-54.
    • (1979) J. Differential Equations , vol.34 , pp. 25-54
    • Nussbaum, R.D.1
  • 18
    • 4243476323 scopus 로고
    • Special and spurious solutions of x(T) = −αf(x(t − 1))
    • Providence, RI
    • R. D. NUSSBAUM and H.-O. PEITGEN, Special and spurious solutions of x(t) = −αf(x(t − 1)), Mem. Amer. Math. Soc. 51 No. 310, Providence, RI, 1984.
    • (1984) Mem. Amer. Math. Soc , vol.51 , Issue.310
    • Nussbaum, R.D.1    Peitgen, H.-O.2
  • 19
    • 0001106289 scopus 로고
    • Global bifurcation of periodic solutions to some autonomous differential delay equations
    • D. SAUPE, Global bifurcation of periodic solutions to some autonomous differential delay equations, Appl. Math. Comput. 13 (1983), 185-211.
    • (1983) Appl. Math. Comput , vol.13 , pp. 185-211
    • Saupe, D.1
  • 21
    • 0003290464 scopus 로고
    • Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations
    • Providence, RI
    • H.-O. WALTHER, Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations, Mem. Amer. Math. Soc. 79 No. 402, Providence, RI, 1989.
    • (1989) Mem. Amer. Math. Soc , vol.79 , Issue.402
    • Walther, H.-O.1
  • 22
    • 0001198349 scopus 로고
    • Bifurcation from periodic solutions in functional differential equations
    • H.-O. WALTHER, Bifurcation from periodic solutions in functional differential equations, Math. Z. 182 (1983), 269-289.
    • (1983) Math. Z , vol.182 , pp. 269-289
    • Walther, H.-O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.