Maximizing genetic gain for the sire line of a crossbreeding scheme utilizing both purebred and crossbred information
Bijma, P., and J. A. M. Van Arendonk. 1998. Maximizing genetic gain for the sire line of a crossbreeding scheme utilizing both purebred and crossbred information. Anim. Sci. 66:529-542.
A breeding procedure designed to make maximum use of both general and specific combining ability
Comstock, R. E., H. F. Robinson, and P. H. Harvey. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J. 41:360-367.
Theory for modelling means and covariances in a two-breed population with dominance inheritance
Lo, L. L., R. L. Fernando, R. J. C. Cantet, and M. Grossman. 1995. Theory for modelling means and covariances in a two-breed population with dominance inheritance. Theor. Appl. Genet. 90:49-62.
Genetic evaluation by BLUP in two-breed terminal crossbreeding systems under dominance
Lo, L. L., R. L. Fernando, and M. Grossman. 1997. Genetic evaluation by BLUP in two-breed terminal crossbreeding systems under dominance. J. Anim. Sci. 75:2877-2884.
Genetic parameter estimates from joint evaluation of purebreds and crossbreds in swine
Lutaaya, E., I. Misztal, J. W. Mabry, T. Short, H. H. Timm, and R. Holzbauer. 2001. Genetic parameter estimates from joint evaluation of purebreds and crossbreds in swine. J. Anim. Sci. 79:3002-3007.
Joint purebred and crossbred (co)variance component estimation with a pseudo multiple trait model: Loss in efficiency
Spilke, J., E. Groeneveld, and N. Mielenz. 1998. Joint purebred and crossbred (co)variance component estimation with a pseudo multiple trait model: loss in efficiency. J. Anim. Breed. Genet. 115:341-350.
Maximizing genetic response in crossbreds using both purebred and crossbred information
Wei, M., and J. H. J. Van der Werf. 1994. Maximizing genetic response in crossbreds using both purebred and crossbred information. Anim. Prod. 58:401-413.