-
1
-
-
84958282742
-
-
note
-
n). After the change of variables x = (4ζ-2)/(r-2) and a = r(r-2)/4, we return to the quadratic map. The transformation is continuous and invertible for r = (2,4).
-
-
-
-
2
-
-
34848902004
-
Overview of coupled map lattices
-
K. Kaneko, "Overview of coupled map lattices," Chaos 2, 279 (1992).
-
(1992)
Chaos
, vol.2
, pp. 279
-
-
Kaneko, K.1
-
3
-
-
45149135778
-
Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements
-
K. Kaneko, "Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements," Physica D 41, 137 (1990).
-
(1990)
Physica D
, vol.41
, pp. 137
-
-
Kaneko, K.1
-
4
-
-
0033196132
-
Syncronized family dynamics in globally coupled maps
-
N.J. Balmforth, A. Jacobson, and A. Provenzale, "Syncronized family dynamics in globally coupled maps," Chaos 9, 738 (1999).
-
(1999)
Chaos
, vol.9
, pp. 738
-
-
Balmforth, N.J.1
Jacobson, A.2
Provenzale, A.3
-
5
-
-
0001390244
-
Tonguelike bifurcation structures of the mean-field dynamics in a network of chaotic elements
-
T. Shibata and K. Kaneko, "Tonguelike bifurcation structures of the mean-field dynamics in a network of chaotic elements," J. Phys. D 124, 177 (1998).
-
(1998)
J. Phys. D
, vol.124
, pp. 177
-
-
Shibata, T.1
Kaneko, K.2
-
6
-
-
84958282743
-
-
note
-
The lack of tree synchronization is related to the purely bottom-up coupling of the system considered here. Adding a further top-down coupling from upper to lower levels may lead to tree synchronization of the system. However, we decided not to explore the even more complex dynamics of a fully coupled hierarchy.
-
-
-
-
7
-
-
0001358227
-
Bubbling transition
-
S.C. Venkataramani, B.R. Hunt, and E. Ott, "Bubbling transition," Phys. Rev. E 54, 1346 (1996).
-
(1996)
Phys. Rev. E
, vol.54
, pp. 1346
-
-
Venkataramani, S.C.1
Hunt, B.R.2
Ott, E.3
-
8
-
-
0018989294
-
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I - Theory, and part II; Numerical application
-
G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, "Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I: Theory, and part II: Numerical application," Meccanica 15, 9 (1980).
-
(1980)
Meccanica
, vol.15
, pp. 9
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.-M.4
-
9
-
-
4243284341
-
Attractor crowding in oscillator arrays
-
K. Weisenfeld and P. Hadley, "Attractor crowding in oscillator arrays," Phys. Rev. Lett. 62, 1335 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 1335
-
-
Weisenfeld, K.1
Hadley, P.2
|